Differentiation of *Rhodococcus* (Gordona) and Nocardia by Thin-layer Chromatography after Uptake of $[^{35}\text{S}]$Methionine

By MICHIO TSUKAMURA AND SHOJI MIZUNO
The National Chubu Hospital, Obu, Aichi, Japan

(Received 16 September 1977; revised 15 November 1977)

INTRODUCTION

Tsukamura (1971) proposed the genus *Gordona* for slightly acid-fast organisms isolated from sputa of patients and soil. Since the genus was found to contain the type strain of *Rhodococcus rhodochrous* (ATCC 13808), the gordonae were reclassified in the genus *Rhodococcus* (Tsukamura, 1974), a proposal supported by Goodfellow & Alderson (1977). Previously, Tsukamura & Mizuno (1975) reported that the thin-layer chromatography of ethanol/diethyl ether extracts, after uptake of $[^{35}\text{S}]$methionine, was useful for the differentiation of mycobacterial species. We have now found that this technique is also useful for the differentiation of *Rhodococcus* and *Nocardia*.

METHODS

The following strains were used: *Nocardia asteroides*: 23007 (m-94); 23009 (m-124); 23032 (m-10); *N. farcinica* (see Tsukamura, 1969): 23036 (m-81); 23047 (m-130); 23102 (ATCC 3318); *N. brasiliensis*: 23010 (m-204); 23106 (n-887); 23109 (n-1188); *N. caviae*: 23035 (m-73); 23078 (m-185); 23113 (n-617); *Rhodococcus lentifragmentus* [according to Goodfellow & Alderson (1977), this organism should be called *Rhodococcus ruber*; synonyms are *N. rubra* and *Gordona lentifragmenta* (Tsukamura, Mizuno & Murata, 1975)]; 23002 (m-1); 23022 (m-122); 23024 (m-192); *R. rhodochrous* (Tsukamura, 1973, 1974; Goodfellow & Alderson, 1977): 40001 (ATCC 13808); 40002 (M. Goodfellow, m-30); 40003 (M. Goodfellow, tsu); 40012 (ATCC 25970); 40013 (ATCC 25971); 40015 (ATCC 4001); 40016 (ATCC 4276); 40017 (ATCC 4273); 40019 (ATCC 14341); 40020 (ATCC 14347); 40021 (ATCC 14348); 40022 (ATCC 14349); *R. bronchialis* (syn. *G. bronchialis*) (Tsukamura 1971, 1974): 50003 (ATCC 25592, NCTC 10667); 50006; 50011; 50013; 50017; 50019; 50051; 50093; 50094; 50095; 50096; *R. rubropertinctus* (syn. *G. rubropertincta*) (Tsukamura, 1971, 1974): 60001; 60002; 60003 (ATCC 25593, NCTC 10668); 60004; 60005; 60015; 60016; 60017; 60018; 60020; *R. terrae* (syn. *G. terrae*) (Tsukamura, 1971, 1974): 70001; 70002; 70003; 70004; 70005; 70006 (ATCC 25594, NCTC 10669); 70007; 70008; 70009; 70010; *R. aurantiacus* (syn. *G. aurantiaca*) (Tsukamura & Mizuno, 1971; Tsukamura, 1974): 80001 (ATCC 25938; NCTC 10741); 80003; 80004. Strains with the prefix M were received from Dr N. M. McClung through Dr I. Uesaka, Kyoto University, and those with the prefix R and strain ATCC 3318 were from R. E. Gordon, Rutgers University, U.S.A. The ATCC strains were from the American Type Culture Collection. The *Rhodococcus* strains examined were those previously called *Gordona*; Goodfellow & Alderson (1977) described several other species.

The experimental methods used were similar to those described previously for rapidly growing mycobacteria (Tsukamura & Mizuno, 1975), and, as before, Ogawa egg medium was used for harvesting the test organisms. The previous methods were modified in that L-$[^{35}\text{S}]$methionine was used at 10 μCi ml$^{-1}$ and the nocardiae were harvested at 28 °C.

RESULTS AND DISCUSSION

Thin-layer chromatograms of ethanol/diethyl ether extracts of nocardiae showed only one radioactive spot at R_F value 0-15 to 0-18 (Fig. 1), but those of the rhodococci had two radioactive spots at R_F values 0-15 to 0-18 and 0-30 to 0-35 (Fig. 1). Test organisms belonging to the same genus showed similar patterns, with the exception of four strains: *R. rhodochrous* 40003 and *R. terrae* 70010 showed only a single spot at R_F value 0-16, and *R. rhodochrous* 40015 and *R. terrae* 70009 showed a single spot at R_F value 0-31.
Fig. 1. Distribution of radioactive spots in thin-layer chromatograms of ethanol/diethyl ether extracts of nocardiae and rhodococci: (a) N. asteroides 23007; (b) N. brasiliensis 23086; (c) N. caviae 23035; (d) R. bronchialis 50003; (e) R. terrae 70004; (f) R. aurantiacus 80003; (g) R. rhodochrous 40022.

The cells were extracted twice with 2.0 ml 10% (w/v) trichloroacetic acid and then twice with 3.0 ml ethanol/diethyl ether (1:1, v/v). The ethanol/diethyl ether extracts were concentrated to 0.1 ml under reduced pressure, and the concentrates were chromatographed on thin-layers (0.25 mm thick) of Silica Gel H using 1-propanol/1-butanol/water/ammonia (57:20:20:3, by vol.) as solvent. (The origin of the chromatographs is on the right.)

Thus, representatives of the genera Rhodococcus and Nocardia showed almost genus-specific patterns in contrast to the almost species-specific patterns found with mycobacteria (Tsukamura & Mizuno, 1975). A small difference was observed between R. rhodochrous and other rhodococci previously called Gordona; R. rhodochrous lacked a distinct spot at RF value 1.00 (front) which was present in the other rhodococci. Rhodococcus lentifragments previously named Nocardia rubra (Tsukamura, 1969) was transferred to the genus Gordona (now, Rhodococcus) by Tsukamura et al. (1975); this organism showed the same pattern as other species of Rhodococcus.

Thus, thin-layer chromatography using [35S]methionine seems to be useful for differentiating between the genera Rhodococcus and Nocardia.

REFERENCES

Effect of Polyoxin D on *Achlya* radiosa

By SONIA M. C. DIETRICH AND GALBA M. A. CAMPOS

Instituto de Botânica, Caixa Postal 4005, São Paulo, SP, Brazil

(Received 3 October 1977)

INTRODUCTION

The oomycetes have been characterized by the presence of cellulose and absence of chitin in their cell walls (Aronson, 1965; Bartnicki-Garcia, 1968; Dick, 1969). Recently, however, the presence of chitin was unequivocally shown in the oomycete *Apodachlya*, order Leptomitales (Lin & Aronson, 1970; Lin, Sicher & Aronson, 1976). Some evidence was also obtained for its presence in 10 isolates belonging to the orders Saprolegniales and Peronosporales (Dietrich, 1973, 1975), by the production of *N*-acetylglucosamine from the walls after treatment with a chitinase-enriched snail digestive juice preparation. However, the latter results have been questioned (Lin *et al.*, 1976) on the grounds that the enzyme preparation used might contain enzymes capable of liberating *N*-acetylglucosamine from substrates other than chitin.

Since it has been proposed that differences in the amounts of the presumed chitinous compound in the walls of oomycetes are important in the phylogeny of this group of fungi (Dietrich, 1973, 1975), further evidence regarding its chemical nature is needed.

Polyoxin D is a specific inhibitor of chitin synthase (Endo, Kakiki & Misato, 1970) and it has been used to investigate the presence and role of chitin in different fungi (Keller & Cabib, 1971; Bartnicki-Garcia & Lippman, 1972; Gooday, 1972). In this paper we report the effect of polyoxin D on the oomycete *Achlya* radiosa.

METHODS

Chemicals. Polyoxin D was a kind gift from Dr Saburo Suzuki (Rikagaku Kenkyusho, Japan). The antibiotic migrated as a single component in the chromatography system described by Isono *et al.* (1967) and had the same *R* as a pure sample of polyoxin D provided by Dr Nobuo Sazaki (Haken Chemical Co., Japan). [G-14C]Glucose (66 mCi mm⁻¹) was from the Département de Biologie, CEA, France; *N*-[1-14C]-acetyl-1,2-glucosamine ([14C]GlcNAc; 5·0 mCi mm⁻¹) was from ICN Isotope & Nuclear Division, California, U.S.A.

Organism and culture methods. *Achlya radiosa* Maurizio, strain spc30 (= *Achlya pseudoradiosa* Rogers & Benecke) was from the live collection of the Instituto de Botânica de São Paulo. It was maintained and grown in Seymour’s MSPS agar medium (Seymour, 1970). Discs of inoculum were transferred either to the centre of Petri dishes of the same medium or to 125 ml Erlenmeyer flasks containing 50 ml of Seymour’s MSPS liquid medium (Seymour, 1970). Polyoxin D and other compounds to be added were sterilized separately by membrane filtration (Millipore filters) and mixed with the autoclaved media at 50 to 60 °C. The media were prepared to give the same final concentrations of constituents after the additions. Cultures were incubated at 22 °C in the dark, without agitation.

Growth measurements. Experiments were carried out with three replicates per treatment. The diameter of agar-grown cultures was measured daily to the nearest millimetre, the diameter of the original inoculum being subtracted. For experiments in liquid medium, the cultures were harvested by centrifugation at 1000 g for 20 min in the cold and washed by centrifugation in cold distilled water three times. The washed mycelia were freeze-dried and weighed, the dry weight of the initial inoculum (mean of 10 discs) being subtracted.

Colonies of *A. radiosa* on agar plates and on agar-coated slides were used to examine the effects of polyoxin D on hyphal morphology. The plates and slides were prepared with the same medium as used for growth analysis. The slides were covered with coverglasses; the inoculum was placed on the periphery of the coverglass and the whole system was maintained in a moist atmosphere during the growth period. Polyoxin D
Short communication

Table 1. Effect of polyoxin D on growth and wall composition in *A. radiosa*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Hyphal diameter* (µm) ± S.D.</th>
<th>Mycelial dry wt† (mg) ± S.D.</th>
<th>Reducing sugars</th>
<th>Hexosamines</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>19.7 ± 2.2</td>
<td>18.2 ± 1.8</td>
<td>64.8</td>
<td>2.7</td>
</tr>
<tr>
<td>+ Polyoxin D (100 µg ml⁻¹)</td>
<td>24.9 ± 3.0</td>
<td>23.2 ± 2.2</td>
<td>68.4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Inhibition by polyoxin D (%)

* Measured 0.5 mm from tips of main hyphae grown in agar medium; mean of 25 determinations.
† Mycelium grown for 4 d in liquid medium, transferred and grown for 48 h in fresh medium with or without polyoxin D; mean of 5 determinations.
‡ After hydrolysis with 1 m-HCl for reducing sugars and 6 m-HCl for hexosamine determinations. Standard chitin produced 97.8% hexosamine under the latter conditions.

Table 2. Effect of polyoxin D on [¹⁴C]GlcNAc incorporation and GlcNAc content in walls of *A. radiosa*

<table>
<thead>
<tr>
<th>Medium</th>
<th>Incorporation of [¹⁴C]GlcNAc (% of control)</th>
<th>Wall GlcNAc content* (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole mycelium</td>
<td></td>
<td>[¹⁴C]GlcNAc</td>
</tr>
<tr>
<td>MSPS complete</td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>MSPS without glucose</td>
<td>63</td>
<td>50</td>
</tr>
</tbody>
</table>

* Measured after wall hydrolysis with a chitinase preparation [specific activity: 0.5 mg GlcNAc liberated (mg protein)⁻¹ (24 h)⁻¹].

Growth in the presence of radioactive substrates. Duplicate cultures were grown for 4 d in liquid medium, harvested and washed under aseptic conditions, and then transferred to fresh medium with the appropriate additions of polyoxin D, [¹⁴C]glucose or [¹⁴C]GlcNAc. The cultures were grown in these media for different periods of time and then harvested. The [¹⁴C]glucose-grown cultures were washed twice with a 0.3% (w/v) solution of unlabelled glucose and the [¹⁴C]GlcNAc-grown cultures were washed twice with a 0.3% (w/v) solution of unlabelled GlcNAc before washing with cold distilled water. The disappearance of radioactivity from the medium and the amount found in the mycelium were measured.

Extraction and analysis of the cell walls. The washed liquid-grown mycelia were frozen and homogenized in a VirTis homogenizer at high speed and then subjected to sonic treatment for 5 min intermittently at 20 kHz. In tracer experiments, small portions of the resulting suspensions were rapidly pipetted to scintillation vials containing 10 ml dioxan scintillation fluid (5 g 2,5-diphenyloxazole, 100 g naphthalene, and 1,4-dioxan to 1 litre) and counted in a Beckman model LS 100 scintillation counter. The suspensions were centrifuged at 1000 g for 20 min, the precipitate was resuspended in 20 ml water and the whole procedure was repeated until the precipitate consisted exclusively of wall fragments, as indicated by cotton blue staining (Dietrich, 1975). Total insoluble protein (Lowry et al., 1951) and total carbohydrate (Umbreit, Burris & Stauffer, 1964) were measured in the washed wall preparations. Radioactivity in labelled walls was determined by counting 2 mg dried walls suspended in 10 ml toluene scintillation fluid [4 g 2,5-diphenyloxazole, 0.05 g 1,4-ditol-(2-(5-phenoxyazo)benzene, and toluene to 1 litre].

The freeze-dried walls were subjected to acid hydrolysis as previously described (Dietrich, 1973, 1975) and to enzyme digestion using a chitinase (EC 2.4.1.16) preparation (Sigma) purified by affinity chromatography (Juniaux, 1957). This preparation did not release N-acetylglucosamine from glycoproteins or from hyaluronic acid, under the experimental conditions used. Walls (5 mg) were incubated with chitinase (10 µg ml⁻¹) at 30 °C for 72 h with continuous shaking. Reducing sugars (Nelson, 1944), hexosamines (Blix, 1948) and...
N-acetylglucosamine (Reissig, Strominger & Leloir, 1955) were determined in wall hydrolysates. Products were separated by paper chromatography (Chargaff, Levine & Green, 1948) and thin-layer chromatography (Schmid, Kehrle & Karrer, 1952), followed by staining with silver nitrate reagent (Trevelyan, Procter & Harrison, 1950) or 0.2 % (w/v) ninhydrin in acetone at 105 °C. In tracer experiments, paper chromatograms were cut lengthwise into strips (corresponding to each chromatographed sample) and scanned in a Packard scanning apparatus. The regions corresponding to peaks in radioactivity were cut out and counted in toluene scintillation fluid.

RESULTS

Polyoxin D (100 μg ml⁻¹) did not affect the radial growth of Achlya radiosa in agar medium. Microscopical observations indicated that there was an increase in hyphal diameter (Table 1) along main hyphae, although tip bursting did not occur. The addition of polyoxin D to cultures during growth in liquid medium resulted in an increase in dry weight and a decrease in wall weight of the mycelium. The walls of polyoxin D-treated mycelia produced less glucosamine than the controls (Table 1).

Polyoxin D promoted a slight increase in glucose incorporation from the medium during 24 h exposure of the mycelium to the antibiotic in the presence of [¹⁴C]glucose (not shown). It caused a decrease in the incorporation of [¹⁴C]GlcNAc from the medium and a decrease in the incorporation of this compound into the cell wall (Table 2). Similar effects were observed if unlabelled glucose was present in the growth medium during the treatment.

Enzymic hydrolysis of the [¹⁴C]GlcNAc-labelled walls with chitinase showed that there was considerably less ¹⁴C in walls from polyoxin D-treated mycelium (Table 2). The total amount of GlcNAc liberated by hydrolysis with chitinase was also lower in walls from polyoxin D-treated mycelia, as indicated by colorimetric determination of GlcNAc in these hydrolysates (Table 2). The identity of GlcNAc in wall hydrolysates was determined by paper and thin-layer chromatography, the latter being followed by autoradiography.

DISCUSSION

Polyoxin D promoted enlargement of hyphal diameters in Achlya radiosa although colony growth and tip integrity were not significantly affected by the antibiotic. Also, cultures grown in the presence of polyoxin D incorporated less N-acetylglucosamine in their walls than did untreated cultures.

As previously observed by Isono et al., (1967), and shown here, polyoxin D does not inhibit growth of oomycetes to the same extent as that of higher fungi. Since the walls of the oomycetes are composed mostly of glucans (Bartnicki-Garcia, 1968; Sietsma, Eveleigh & Haskins, 1969; Novaes-Ledieu, Jiménez-Martínez & Villanueva, 1967), the inhibition of chitin synthesis by polyoxin D might not cause growth inhibition or the hyphal tip bursting effects observed in fungi known to contain chitin (Bartnicki-Garcia & Lippman, 1972). It could, however, explain the enlargement of hyphal diameter. This effect suggests that the role of chitin in A. radiosa, and possibly in other oomycetes, may be related to the flexibility of the hyphae.

We thank Dr C. P. Dietrich for useful suggestions and the use of some of his laboratory facilities, and Professor F. Lara (University of São Paulo) and Professor Norman M.
MacDuffie (University of Saskatchewan) for the supplies of $[^{14}\text{C}]$glucose and $[^{14}\text{C}]$GlcNAc, respectively.

This work was aided by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. G. M. A. C. is on leave of absence from the Instituto de Antibióticos, Universidade Federal de Pernambuco, under a fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil.

REFERENCES

