Accommodation of Yeast to Toxic Levels of Cadmium Ions

By IAN G. MACARA*
Department of Biochemistry, University of Nairobi,
P.O. Box 30197, Nairobi, Kenya

(Received 9 August 1977)

Saccharomyces cerevisiae can accommodate to the presence of toxic levels of Cd²⁺. This adaptation can also be induced, though to a lesser degree, by pre-growth of the yeast in 50 μM-Zn²⁺. Growth of Cd²⁺-adapted yeast through several passages in Cd²⁺-free medium leads to a progressive decrease in Cd²⁺-tolerance by the yeast, suggesting that the adaptation did not involve selection of a Cd²⁺-resistant mutant. Chromatography on Sephadex G-75 of the soluble fraction from Cd²⁺-adapted yeast indicated that no metallothionein-like protein was present. This suggests that the mechanism of adaptation is unlike that of the higher eukaryotes.

INTRODUCTION

The toxicity of cadmium is well documented and numerous studies of its biochemical effects have been made (for review, see Vallee & Ulmer, 1972). An adaptive response to Cd²⁺, that protects the organism against damage by the cation, has been observed both in human tissue (Rugstad & Norseth, 1975) and in Escherichia coli (Mitra et al., 1975). The mechanisms of adaptation differ, however. In mammals a cadmium-binding protein, metallothionein, is induced; it can bind 7 to 8 Cd²⁺ or Zn²⁺ ions and has a molecular weight of about 10000 (Kagi & Vallee, 1961). In E. coli no metallothionein exists and accommodation appears to involve an inhibition of Cd²⁺ uptake. Pre-treatment with Zn²⁺ also elicits the adaptive response, both in E. coli and in the rat (Webb, 1972).

The purpose of the present study was to ascertain whether induction of metallothionein represents a general eukaryotic mechanism of accommodation or is restricted to the higher eukaryotes. Failla & Weinberg (1977) have suggested that a metallothionein-like protein might control Zn²⁺ accumulation in yeast.

METHODS

Organism. A strain of Saccharomyces cerevisiae isolated in this laboratory was used. It was grown in batch culture at 30 °C on a defined medium containing 40 g glucose, 10 g (NH₄)₂SO₄, 2 g KH₂PO₄, 1 g MgSO₄.7H₂O, 0.2 g NaCl, 0.2 g CaCl₂, 30 mg inositol, 8 mg thiamin, 1 mg pyridoxine, 1 mg calcium pantothenate, 0.5 mg riboflavin, 50 μg biotin, 1 mg H₃BO₃, 0.8 mg ZnSO₄. 7H₂O and 0.6 mg (NH₄)₂SO₄.FeSO₄.6H₂O in 1 l glass-distilled water. Cell concentrations were determined from turbidities measured at 590 nm.

Effect of Cd²⁺ on growth. The yeast was grown on defined medium alone, or in the presence of either 50 μM-Zn²⁺ or 50 μM-Cd²⁺, to a concentration of 0.5 % (w/v, wet weight). Samples were then inoculated into fresh medium containing Cd²⁺ (0 to 1 mM) to a concentration of 0.01 % (w/v), and incubated with shaking at 30 °C. Turbidity was measured over a period of 24 h.

In a second experiment, yeast was grown in batch culture through three passages, the concentration of Cd²⁺ in the medium being doubled at each passage, from 5 to 40 μM. The yeast was then taken through

* Present address: New England Aquarium Corp., Central Wharf, Boston, Massachusetts 02110, U.S.A.
Fig. 1. Effect of pre-growth in 50 \(\mu \text{M-Cd}^{2+} \) (○) or 50 \(\mu \text{M-Zn}^{2+} \) (□) on the growth of yeast in batch culture on defined medium containing \(\text{Cd}^{2+} \), as compared with the growth of normal yeast (●, ■). Wet weights were calculated from turbidities measured at 590 nm. (a) Growth yield after 24 h, (b) yield after 9 h; yields are expressed as fractional increases in cell mass, \((M_t - M_0)/M_0\), where \(M_t \) is the mass (wt) at time \(t \) and \(M_0 \) the initial mass.

RESULTS

Effect of \(\text{Zn}^{2+} \) and \(\text{Cd}^{2+} \) pre-treatment on growth in \(\text{Cd}^{2+} \)-containing medium. Cell yields after 24 h growth in \(\text{Cd}^{2+} \)-containing medium are shown in Fig. 1(a) for both normal yeast and yeast pre-grown in the presence of 50 \(\mu \text{M-Cd}^{2+} \). Initial growth rates were slower for cadmium-adapted yeast at concentrations up to 500 \(\mu \text{M-Cd}^{2+} \), but whereas control growth began to decrease after about 8 h, that of the cadmium-adapted yeast continued in exponential phase beyond 24 h. A similar, but less pronounced effect on cell yield was observed for yeast pre-grown in 50 \(\mu \text{M-Zn}^{2+} \).
Accommodation of yeast to Cd2+

Fig. 2. De-adaptation of yeast towards Cd2+ toxicity. Cadmium-adapted yeast was prepared by growth in batch culture through three passages, the concentration of Cd2+ in the medium being doubled at each passage, from 5 to 40 \mu M. This yeast was then grown through five passages on 100 ml cadmium-free medium. Growth of yeast removed at each passage was followed in medium containing 80 \mu M-Cd2+ (from an initial concentration of 0.025 \%, w/v). Growth of: unadapted yeast on 80 \mu M-Cd2+ (●); adapted yeast (○); de-adapting yeast, second (□), third (■), fourth (△) and fifth (▲) passages.

the effect of Cd2+ on membrane integrity was determined, K+ release being used as a criterion of membrane damage. Small amounts of K+ (about 5 \% of the total K+) were detected in every supernatant in which Cd2+ was present but the amount was independent of Cd2+ concentration over the range 5 to 75 mM. In contrast, 7.5 mM-Hg2+ caused release of all the intracellular K+.

Gel filtration of soluble fraction from 109Cd-loaded yeast. After treatment of 109Cd-loaded yeast with β-glucuronidase, about 75 \% of the total radioactivity was found in the supernatant. After disruption of the spherooplasts and centrifugation, the soluble fraction contained only 9 \% of the total radioactivity. Gel filtration of the soluble fraction indicated that about 70 \% of the 109Cd was bound to proteins eluted with the void volume (molecular weight > 70000). Most of the remaining 108Cd eluted at V\textsubscript{t} (total volume) suggesting that it is present as the free ion or bound to substances of low molecular weight (< 3000). No 109Cd was detected at an elution volume coincident with that expected for a metallothionein of molecular weight 10000.

DISCUSSION

The results suggest that *S. cerevisiae* is similar to both mammals and bacteria in being able to accommodate to the presence of toxic levels of Cd2+, and that this accommodation can also be induced by Zn2+. It is unlikely that the observed resistance is caused by selection of cadmium-resistant mutants since growth in Zn2+-containing medium exerts no selective pressure at the Zn2+ concentrations used. Moreover, cadmium-adapted yeast shows a progressive de-adaptation when grown in medium lacking Cd2+. This is possibly a reflexion of the progressive dilution of intracellular Cd2+ that must occur during growth. The Cd2+ does not appear to exert its toxic effects by disruption of the yeast plasma membrane.

The absence of an inducible metallothionein suggests that the mechanism of accommodation in yeast may resemble that in *E. coli*. The observation that only 9 \% of the 109Cd was found in the soluble fraction of yeast compares closely with the value of 10 \% found for *E. coli* by Mitra et al., (1975). In rat liver, 85 \% of 109Cd is bound to metallothionein (Winge & Rajagopalan, 1972).

In several other systems the size of the intracellular pool of a particular metabolite has been shown to regulate the associated transport system by transinhibition (Grabeel & Grenson, 1970; Cummins & Mitchison, 1967), and it is possible that high intracellular levels of Cd2+ inhibit the divalent cation transport system in yeast. The observation that
the degree of de-adaptation is related to the period of growth in cadmium-free medium supports this hypothesis. The kinetics of Cd$^{2+}$ transport in cadmium-adapted and normal yeasts are being investigated. Since no exchange of 109Cd appears to occur it is unlikely that accommodation involves efflux of the cation.

The absence of a metallothionein in *S. cerevisiae* argues against the suggestion of Failla & Weinberg (1977) that a protein of this type is involved in control of Zn$^{2+}$ accumulation by yeasts.

REFERENCES

MITRA, R. S., GRAY, R. H., CHIN, B. & BERNSTEIN, I. A. (1975). Molecular mechanisms of accommo-

dation in *Escherichia coli* to toxic levels of cadmium ion. *Journal of Bacteriology* **121**, 1180–1188.

