Increase in human immunodeficiency virus 1 diversity and detection of various subtypes and recombinants in north-eastern Brazil

Kledoaldo Lima,1* Élcio Leal,2 Ana Maria Salustiano Cavalcanti,3 Daniela Medeiros Salustiano,3 Luzidalva Barbosa de Medeiros,4 Sirleide Pereira da Silva3 and Heloísa Ramos Lacerda1

Abstract

Purpose. Diverse human immunodeficiency virus 1 (HIV-1) subtypes and circulating recombinant forms are found in Brazil. The majority of HIV-1 molecular epidemiological studies in Brazil have been conducted in the southern and south-eastern regions of the country, although several recent studies in the north-eastern region have addressed this issue. The objective of this study was to molecularly characterize HIV-1 circulating in Pernambuco, north-eastern Brazil.

Methodology. A total of 64 samples were collected from 2002 to 2003, and another 103 were collected from 2007 to 2009. The protease and partial reverse transcriptase regions of the HIV-1 polymerase-encoding (pol) gene were sequenced, and subtyping, recombination and phylogenetic analyses were performed.

Results/Key findings. Subtype B (60.9 %) was found to be predominant, followed by HIV-1 F (31.4 %). Several BF recombinants (4.2 %), and BC and AG recombinants were also identified. The intra-subtype genetic diversity was estimated to be 0.065 (so ±0.004) for HIV-1 B and 0.055 (so ±0.004) for HIV-1 F, reflecting a greater accumulation of mutations in subtype B (P<0.01). More codons were found to be under positive selective pressure in samples collected from 2007 to 2009, from individuals with a T-cell count ≥200 cells mm−3 and from women. Coalescence data indicated that the subtype F population has been continuously expanding.

Conclusions. HIV-1 shows high genetic diversity in the state of Pernambuco. Thus, additional molecular evaluations of circulating strains will provide a better understanding of the epidemic and may lead to more effective preventive strategies.

INTRODUCTION

Human immunodeficiency virus 1 (HIV-1) shows high genetic diversity in Brazil. Subtype B is the most prevalent, followed by the subtypes F and C [1, 2]. Multiple circulating recombinant forms (CRFs) have been identified in Brazil, including CRF31_BC in the south [3]; CRF28 BF and CRF29 BF in Santos, São Paulo state [4]; CRF39 BF and CRF40 BF in Rio de Janeiro [5]; CRF 46BF in São Paulo [6]; CRF70 BF and CRF71 BF in Pernambuco [7]; and CRF72 BF in Minas Gerais [8]. In addition, multiple subtypes and minority recombinants have been identified, including subtypes A [9] and D [1, 10–13], and recombinants FD [11, 14] and FC [11]. There has been one report of autochthonous horizontal transmission of CRF02 AG in Rio de Janeiro [15]. Unique recombinant forms (URFs) of BF were identified early [16] in the Brazilian epidemic and subsequently disseminated to various regions of the country [17–20]. In addition, CRF45_cpx was recently detected in São Paulo [21].

The HIV-1 epidemic has been stable in most of Latin America since 2000, but stabilized in Brazil after 2004; two-thirds of the people living with HIV in South and Central America...
HIV-1 strains in north-eastern Brazil show high molecular diversity, with the subtypes B, F, C and D circulating [13, 23–25]. A high frequency of BF recombinants has been reported in the state of Bahia [13, 26], and subtype F, CRF70, and CRF71_BF are common in the state of Pernambuco [7, 17].

Co-circulation of multiple subtypes may facilitate the generation and dispersal of recombinant viruses [4, 27]. Recombination among subtypes B and F has been occurring since the introduction of the latter subtype in South America [28, 29]. BF recombinants have played an important role in the HIV-1 epidemic in South America, dispersing rapidly after their emergence [27, 30]. Identification and characterization of recombinant viruses is important, because recombination can have a major impact on HIV-1 evolution, transmission vector specificities, virulence, pathogenesis, and potential for host immune evasion and in vitro fitness recovery [31, 32].

Since 2002, the incidence of AIDS has markedly increased in northern and north-eastern Brazil, which represents some of the country’s poorest areas (ftp://ftp.ibge.gov.br/Contas Regionais/2010/pdf/tab02.pdf) [22]. The current study aimed to characterize the molecular epidemiology of HIV-1 in the state of Pernambuco in north-eastern Brazil by identifying the types and frequencies of viral variants in patients attending a referral hospital for infectious diseases and at some voluntary counselling and testing centres (VCTs).

METHODS

Study population

Samples were obtained from patients attending the Hospital of the Federal University of Pernambuco, Recife, Brazil, between 2002 and 2003, in a study by de Medeiros et al. [25], and from individuals who sought HIV diagnosis at the five largest VCTs in Pernambuco, between 2007 and 2009, in a study by Cavalcanti et al. [17]. There was no overlap in patients between the two study populations. All samples were collected in Pernambuco state, north-eastern Brazil, and all participants provided written informed consent. Only samples from treatment-naive individuals were included. Samples codes, dates of sampling, viral subtypes and GenBank numbers are presented in Table S1 (available in the online Supplementary Material). Convenience sampling was employed, and samples were collected from participants representing different groups: heterosexual (HTS) individuals, MSM, sex workers, pregnant women, injection drug users and blood transfusion recipients. All data were obtained from the databases of the above studies and were anonymized [17, 25]. Additional sociodemographic and behavioural data were collected from medical records at the institutions where the participants were first diagnosed.

CD4+ T-lymphocyte counts and viral loads that were not available in research databases were obtained from the records of the Central Public Health Laboratory of Pernambuco (LACEN-PE); results collected closest to the date of HIV-1 diagnosis were used. CD4+ T-cell counts were measured by flow cytometry (FACSCalibur; Becton Dickinson) and viral loads were measured by a nucleic acid sequence-based amplification assay (NASBA; Organon Teknika) and branched-chain DNA assay (VERSANT HIV-1 RNA 3.0 assay; Bayer). BED-capture enzyme immunoassay results, used to determine recent or long-term HIV-1 infection, were obtained in a study by Cavalcanti et al. [17].

The state of Pernambuco is located in north-eastern Brazil. It borders the Atlantic Ocean and has a population of 9.2 million people in an area of 98 148 km² (www.ibge.gov.br/estadosat/perfil.php?sigla=pe). This study was approved by the Ethics Committee of the Health Sciences Center of the Federal University of Pernambuco (CCS-UFPE), protocol no. 114 722, and the funding source was the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Ministry of Education, Brazil.

Sequencing of the HIV-1 polymerase-encoding (pol) gene

Initially, viral RNA was extracted from plasma, using a QIAamp RNA mini kit (Qiagen). Sequencing of the entire protease (PR) and partial reverse transcriptase (RT) of pol was performed using the ViroSeq HIV-1 genotyping system (Abbott Laboratories) [25] or the TRUGENE HIV-1 genotyping assay (Siemens Diagnostics) [17], and an ABI PRISM 3100 DNA automated sequencer (Applied Biosystems) and OpenGene sequencing system (Siemens Diagnostics), respectively. All procedures were performed according to the manufacturer’s instructions. Fragments of 918 bp were obtained that encompassed the PR (positions 2262–2549) and partial RT (positions 2661–3290; position numbers based on a comparison with strain HXB2, GenBank accession number K03455). The GenBank accession numbers for the 167 HIV-1 nucleotide sequences are KX020958–KX021124.

Phylogenetic analysis

The HIV-1 pol sequences were initially analysed using the rega automated tool for HIV-1 and -2 subtyping (version 2.0) (www.bioafrica.net/rega-genotype/html/subtypinghiv.html) to determine viral subtypes. An additional analysis of each sequence was conducted using BLAST (www.hiv.lanl.gov/content/sequence/BASIC_BLAST/basic_blast.html), and similar sequences were obtained from the Los Alamos HIV sequence database (www.hiv.lanl.gov/content/index) for comparison.
The alignment contained 891 bp comprising some query and reference sequences; resistance mutations were excluded. The tree structure was determined by ML analysis implemented in MEGA 5 with 1000 bootstrap replicates. Tree nodes with a bootstrap ≥70 are demonstrated. Red circles, HIV-1 B; green circles, HIV-1 F; black circles, BF recombinants; blue circles, HIV-1 C; purple circle, HIV-1 H. Phylogenetic inference with all query sequences is available in Fig. S1.

Multiple alignments were performed using CLUSTALX [33], followed by manual editing using BioEdit software [34]. Sites with gaps or ambiguities were excluded, and the reading frame of the pol gene was found to be conserved.

The nucleotide substitution model was selected following a likelihood ratio test with Bayesian information criterion, implemented in MEGA 5.0 [35]. The general time-reversible model with gamma distribution and proportion of invariable sites (GTR+G+I) was selected for implementation. Phylogenetic inferences were made using maximum likelihood (ML) criteria in MEGA 5.0. Statistical support for tree topologies was determined by a bootstrap analysis with 1000 replicates. Phylogenetic networks, assembled in SplitsTree4 [36] using the NeighborNet method, were used to confirm the phylogeny. Trees were visualized in FigTree version 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).

Screening for HIV-1 intersubtype recombination

Initially, we used the BLAST genotyping tool (www.ncbi.nlm.nih.gov/projects/genotyping/formpage.cgi) to identify subtypes and recombinants from viral sequences. Each query sequence was compared, by BLAST, with reference sequences in the Human Immunodeficiency Virus 1 (HIV-1) 2009 RefSeq database.

To determine the extent of recombination in HIV sequences, we used SIMPLOT software version 3.5.1 [37] and RDP software v.4 [38]. The following parameters were used in SIMPLOT: F84 nucleotide substitution model with 1000 bootstrap replicates, sliding window of 200, 20 bp steps and 90 % confidence. The ratio of transitions/transversions was determined empirically for each alignment evaluated. We applied the RDP package, using a variety of recombination detection methods, including 3Seq, which performs a nonparametric test to detect recombination in triplets of sequences [39], and maximum χ², a method developed by Maynard-Smith [40] that uses variable/invariable sites to identify recombination in pairs of sequences. This method generates random sequence pairs, and the significance level is determined by the proportion of simulated

Table 1. Frequencies of HIV-1 B and F in 2002–2003 and 2007–2009 in Pernambuco, north-eastern Brazil

We took into consideration only the prevalent cases of HIV-1 B and F, not including other non-B subtypes in the analysis. Chi-square test: P=0.01.

<table>
<thead>
<tr>
<th>Year</th>
<th>HIV-1 subtype</th>
<th>B [N (%)]</th>
<th>F [N (%)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002–2003</td>
<td></td>
<td>48 (77.4)</td>
<td>14 (22.6)</td>
</tr>
<tr>
<td>2007–2009</td>
<td></td>
<td>55 (58.5)</td>
<td>39 (41.5)</td>
</tr>
</tbody>
</table>
sequence pairs with maximum χ^2 values higher than those in the real data. The maximum match χ^2 (chimaera) is a modification of Smith’s method; it uses variable sites to calculate maximum χ^2 match statistics [41]. In addition, GeneConv was used to detect gene conversions (recombination) by evaluating conserved substitutions in two sequences [42]. Although evolutionary methods are not explicitly implemented in GeneConv, it offers a robust recombination detection method with a low number of false positives, including events resulting from rate heterogeneity and natural selection [43]. Initially, we used the default parameters; then, the parameters were optimized to reduce the number of false positives. In addition, window sizes of 20 to 50, as well as a Bonferroni correction with P values of 0.05 and 0.001, were utilized. We also used interval [44] in the RDP package, which uses an approximate likelihood approach with a Bayesian reversible-jump Markov chain Monte Carlo scheme to estimate the alignment-wide population-scaled recombination rate (ρ). Here, we used a mutation rate of 0.003 per generation per site and population sizes of 10^2 to 10^3 (previously calculated in BEAST).

Coalescent analysis

We used a Bayesian Markov chain Monte Carlo (BMCMC) coalescent framework to estimate ancestral genealogy, phylogenetics and evolutionary parameters such as nucleotide substitutions per year and time to the most recent common ancestor (tMRCA). The BMCMC method incorporates the uncertainty of measurements by considering the errors intrinsic to both tree reconstruction and the coalescent method. The uncertainty is estimated by the highest posterior density interval, which contains 95% of the marginal posterior distribution. After the Markov chain has run long enough so that the parameter space has been sufficiently sampled, which is indicated by an effective sample size (ESS) greater than 100, and the parameters become stable, the mean and 95% highest posterior density intervals of each parameter can be calculated. The Hasegawa-Kishino-Yano model plus a gamma correction (Γ) was applied to all

Table 2. Breakpoint positions of B and F genomic segments in the pol gene fragment of HIV-1 BF recombinants

<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Breakpoint position* (parental subtype)</th>
<th>RDP method</th>
</tr>
</thead>
<tbody>
<tr>
<td>08PE055</td>
<td>2262–2628 (F); 2629–3290 (B)</td>
<td>GeneConv</td>
</tr>
<tr>
<td>08PE062</td>
<td>2262–3054 (F); 3055–3290 (B)</td>
<td>GeneConv</td>
</tr>
<tr>
<td>08PE092</td>
<td>2262–2632 (F); 2633–3290 (B)</td>
<td>GeneConv</td>
</tr>
<tr>
<td>03PE099</td>
<td>2262–2644 (F); 2645–3290 (B)</td>
<td>GeneConv</td>
</tr>
<tr>
<td>03PE104</td>
<td>2262–2976 (F); 2977–3290 (B)</td>
<td>GeneConv</td>
</tr>
<tr>
<td>08PE134</td>
<td>2262–2642 (F); 2643–3290 (B)</td>
<td>GeneConv</td>
</tr>
<tr>
<td>08PE188</td>
<td>2262–2640 (F); 2641–3290 (B)</td>
<td>GeneConv</td>
</tr>
</tbody>
</table>

MaxChi, maximum χ^2.

*Positions are numbered according to the pol gene of the HXB2 reference sequence (GenBank accession no. K03455).
analyses, and the evolutionary and demographic parameters were iteratively adjusted.

The Bayesian skyline plot method provides an unbiased estimate of genetic diversity over time [expressed as the product of the ESS (\(N_e\)) and generation time (\(t\))] because a wide range of demographic scenarios are considered, without formally assuming any determined model [45]. Since we used absolute time (years) to scale branch lengths and did not assume a specific generation time, our estimates of \(N_e \cdot t\) reflect only the relative genetic diversity of viral strains over time. Besides, the Bayesian skyline plot was the best-fit model when compared with the constant coalescent model. Sequences sampled at different times (heterochronous samples) were used to estimate the ancestral genealogy, incorporating evolutionary parameters such as nucleotide substitution rate per year and growth rate over time. MCMC processes ran for \(3 \times 10^8\) generations with the initial 10% of each run discarded as burn-in. The convergence of chains was evaluated using Tracer 1.5 (available at http://beast.bio.ed.ac.uk/), and runs were accepted when all parameters presented an ESS greater than 200. Two independent chains were run for each dataset and combined using LogCombiner software [45, 46]. All analyses were performed with BMCMC approaches implemented in BEAST version 1.8.1 [46]. To estimate diversity over time (\(N_e \cdot t\)), the mutation rate was fixed at \(1.5 \times 10^{-3}\), and prior probability distributions were assumed, i.e. a normal distribution for a mean sample size of 400±150 and for a mean clock rate of \(1.0 \times 10^{-3} ± 0.001\). Parameters were fixed to avoid a branch

Table 3. Codons under positive selective pressure in the HIV-1 B and F pol gene

<table>
<thead>
<tr>
<th>Variable</th>
<th>Subtype</th>
<th>Codon*</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-cell counts†</td>
<td></td>
<td></td>
</tr>
<tr>
<td><200</td>
<td>B (n=32)</td>
<td>PR: –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: –</td>
</tr>
<tr>
<td></td>
<td>F (n=11)</td>
<td>PR: –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: 173</td>
</tr>
<tr>
<td>≥200</td>
<td>B (n=49)</td>
<td>PR: 37, 77, 93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: 161, 199, 210†</td>
</tr>
<tr>
<td></td>
<td>F (n=29)</td>
<td>PR: 12, 19, 62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: 172, 199</td>
</tr>
<tr>
<td>Exposure category</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>B (n=33)</td>
<td>PR: –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: 199, 244</td>
</tr>
<tr>
<td></td>
<td>F (n=10)</td>
<td>PR: –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: –</td>
</tr>
<tr>
<td>HTS female</td>
<td>B (n=36)</td>
<td>PR: 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: 209, 243</td>
</tr>
<tr>
<td></td>
<td>F (n=25)</td>
<td>PR: 12, 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: 173, 200</td>
</tr>
<tr>
<td>HTS male</td>
<td>B (n=31)</td>
<td>PR: 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: –</td>
</tr>
<tr>
<td></td>
<td>F (n=17)</td>
<td>PR: –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RT: –</td>
</tr>
</tbody>
</table>

*Sequences with 918 bp (308 codons).
†Cells mm\(^{-3}\).
‡Drug resistance codon.
length bias caused by a uniform prior distribution [47], and new estimates for sample size and clock rate were obtained. Next, to calibrate the tMRCA, a prior for the mutation rate of 1.0x10^{-3} was set. Fixed values (obtained at the first stage of the analysis) of 1.0x10^{-3}±0.001 for the clock rate and 1200±150 for the sample size were also used. These conditions allowed us to re-estimate the diversity (Ne.t) and date of nodes of the HIV-1 strains. In addition to the sequences generated in this study, we also analysed 141 HIV-1 B sequences from Brazil and 13 HIV-1 F sequences obtained worldwide to infer population sizes and the tMRCA (Supplementary Material S1).

Analysis of genetic diversity and positive selective pressure in HIV-1 pol subtypes B and F

A genetic diversity analysis was performed to compare the pairwise distances between sequences collected at different times. We determined the genetic distances among sequences belonging to subtypes B and F collected in 2002–2003 and 2007–2009. The intra-subtype genetic diversity among samples collected in each time period was inferred by estimating the nucleotide diversity (π) in MEGA 5.0.

To estimate the synonymous and nonsynonymous substitution rates across amino acid sites in the HIV-1 sequences, we used a random effects likelihood (REL) approach [48, 49]. REL is a phylogeny-based framework that explicitly allows both the synonymous and non-synonymous substitution rates to vary from site to site, and it uses a general underlying nucleotide substitution model to independently calculate the dS and dN rates. The REL method was described in Hyphy version 2.2 [50] and implemented in MEGA 5.0. Sequences were analysed by subtype (B and F), CD4 cell counts and type of exposure.

Statistical analysis

The chi-square test was performed to compare the proportions of subtypes B and F in each period (period 1, 2002–2003; period 2, 2007–2009). Statistical significance was set at 5 % (P<0.05). Age was given as the mean±SD. CD4+ cell counts and viral load were given as medians and interquartile intervals. Data were analysed using Stata V.13 software (Stata).

RESULTS

Characteristics of the study population

No participants received drug therapy during the study. The mean age of the patients was 34 years, and the majority were male (58.1 %). Regarding women, 13 % were pregnant. The main exposure categories were HTS (29.9 % were male HTS and 41.9 % were female HTS) and MSM (28.1 %), with a low prevalence of injection drug users and non-injection drug users (1.8 %). Additionally, 6.6 % of individuals reported sexual relationships with HIV-positive partners. The median CD4+ cell count and viral load were 210 cells mm⁻³ and 14 731 copies ml⁻¹, respectively.

Molecular genotyping

There was a high frequency of subtypes B (n=103, 61.6 %) and F (n=53, 31.7 %), and the presence of HIV-1 C (n=3, 1.8 %), BF recombinants (n=7, 4.2 %) (Fig. 1) and one AG recombinant (Fig. S1). A ML phylogenetic analysis of all sequences is shown in Fig. S2. One HIV-1 C strain was classified as a BC recombinant after a recombination analysis (Fig. S3). The reconstructed phylogenetic networks confirmed the ML analysis (Fig. S4). Both methods agreed with the classification of HIV-1 subtypes and BF recombinants. Networks that contained recombinants were more reticulated than those without.

Among subtype F strains, 49 % (26/53) were from HTS males, 32 % (17/53) were from HTS females and 19 % (10/53) were from MSM, although there was no statistically significant association between exposure category and subtype F in Pernambuco (P=0.061). Using only the frequencies of subtypes B and F, which comprised more than 90 % of circulating HIV-1 strains in the region, a statistically significant increase in the frequency of subtype F was observed between the two time points (i.e. 2002–2003 and 2007–2009) (Table 1).

We found a low prevalence of subtype C (2/168, 1.2 %). Sample 09PE181, obtained in 2009, was a BC recombinant (Fig. S3). Epidemiological data and BED-capture enzyme immunoassay revealed that 09PE181 was a recent infection in a man with a male HIV-positive sexual partner. Recombinant AG (08PE056) was detected in a pregnant woman with a long-term infection.

Recombination analysis

Initially, we used default parameters to screen for recombination signals in the alignment. Screening correctly identified all BF intersubtype sequences that had been previously characterized by phylogenetic analysis. To determine breakpoint positions, the following references were used: subtype A, 02UZ652.AY829203; subtype B, US.2003.F7157, FJ49731; subtype C, 04BR038.AY727524; subtype F, 02BR082.FJ771006; subtype H, BE.1993.V1991.AF190217; subtype K, CD.1997.97ZR-EQTB11.AJ249235; subtype J, SE.1994.SE9173_7022.AF082395; and subtype G, CU.1999.Cu74.AY586547. To locate the breakpoints, we chose the method that resulted in the highest probability of recombination for each intersubtype sequence (Table 2). Interestingly, some BF URFs (08PE055, 08PE092, 08PE099, 08PE134 and 09PE188) had recombination breakpoints similar to those of CRFs 28 and 29 BF in the genomic region analysed. Recombination rates (ρ) were estimated from the alignment containing all 103 subtype B (0.8±10⁻⁴), 53 subtype F (1.2±10⁻⁴) and 7 intersubtype BF sequences (1.5±10⁻⁴).

Population dynamics of HIV-1 in Pernambuco, Brazil

We analysed variations in the population sizes of subtypes B and F (Figs 2 and 3). A Bayesian coalescent inference
method was applied to compare historical population sizes of subtype B in Pernambuco with those of Brazilian samples from the south-eastern region (mainly isolates from São Paulo, Rio de Janeiro and Minas Gerais) isolated from 1990 to 2010 (Fig. 2). These patterns of population growth and decline were quite similar between subtype B in Brazil and in Pernambuco, with steep exponential growth followed by a plateau in diversity. The main difference was the timing of infection, with the introduction of HIV-1 B in Pernambuco occurring during the exponential phase of growth in HIV-1 infections in the south-east. The population dynamics of subtype F were less clear, owing to the limited number of sequences available. Here, we compared the diversity of samples from Pernambuco with that of global subtype F reference strains (Supplementary Material S1). The HIV-1 population in Pernambuco showed a moderate growth phase, followed by a plateau in diversity, and was introduced later than the emergence of global subtype F strains (Fig. 3). The coalescent method was also applied to estimate the date that HIV-1 was introduced into Pernambuco, with 1978 inferred as the tMRCA [95% confidence interval (CI) 1971–1981] and 1982 (95% CI 1977–1986), respectively, for subtypes B and F.

Increase in intrasubtype diversity of subtypes B and F

The mean genetic distances for subtype B strains (years 2002–2003 and 2007–2009) were 0.056 (SD ±0.004) and 0.072 (SD ±0.004), respectively, whereas for subtype F, the distances were 0.045 (SD ±0.004) and 0.064 (SD ±0.004), respectively. In both subtypes, diversity increased between the two sampling periods (P<0.0000001). The overall intrasubtype genetic diversity was estimated to be 0.065 (SD ±0.004) for HIV-1 B and 0.055 (SD ±0.004) for HIV-1 F, reflecting a greater accumulation of mutations in subtype B (P<0.0000001).

Positive selective pressure on HIV-1 B and F pol

Codons identified as under positive selection in subtypes B and F strains were examined in association with T-cell count and type of exposure (Table 3). Codon positions were numbered according to the HXB2 reference sequence (GenBank accession no. K03455).

In subtype B, codon 37 (PR) showed the highest frequency of positive selection; for HIV-1 F, the codons most frequently under positive selection were 12 (PR) and 173 (RT). A higher number of codons under positive selection was observed in samples collected from individuals with a T-cell count ≥200 cells mm⁻³. HTS females presented a higher number of codons under positive selection than HTS males.

DISCUSSION

To characterize HIV-1 strains circulating in Pernambuco, a state in north-eastern Brazil, 167 sequences of the PR-encoding gene and the initial two-thirds of the RT-encoding gene were analysed. The cross-sectional design and convenience sampling used in this study presented some limitations to determining the characteristics of the epidemic. Although the phylogenetic analyses were conducted on a small genomic pol fragment, some authors have reported advantages to using the pol region to evaluate inter-subtype recombination because it is an important recombination hot spot [18, 51]. We found high viral diversity in our sample dataset: subtypes B (61.7 %), F (31.7 %), C (1.2 %), BF (4.2 %), and recombinants AG and BC were detected.

The high frequency of HIV-1 subtype B (61.7 %) is consistent with it being the first subtype isolated in the Western world and its subsequent spread worldwide [52, 53]. However, some studies have shown that, in Pernambuco, there is a lower frequency of subtype B than in other states in north-eastern Brazil, such as Bahia and Ceará, where the frequency ranges from 77 to 89 % and 81 to 85 %, respectively [13, 26, 54–57].

Recently, Alencar et al. [58] showed a high proportion of subtype F strains circulating in Pernambuco (24 %) by analysing the pol region, which is consistent with our data. However, Pessão et al. [21] evaluated the complete genomes of the HIV-1 subtype F strains sequenced by Alencar et al. [58] and showed that, among 24 samples previously determined to be HIV-1 F using the pol region, 23 were BF recombinants, with 4 CRF70_BF1 and 11 CRF71_BF1 novel recombinant types.

Although some studies indicate the dissemination of HIV-1 BF in South America [27, 59, 60], the frequency of these recombinants in Brazil varies by geographical region and even local area, indicating that factors other than proximity influence their dispersion [61]. In north-eastern Brazil, a high percentage (approximately 20 %) of BF recombinants among all analysed strains was reported in Bahia [13, 26, 62], whereas in Ceará it was less than 2.7 % [26, 56]. The BF URFs detected in samples collected in 2002–2003 indicated that these strains have been circulating in the state of Pernambuco for a long time. The movement of these recombinants in Brazil was evident in samples collected in the early to mid-1990s [55].

We reanalysed the results obtained by the ML and NeighborNet methods to avoid a bias in the phylogenetic data due to the presence of BF recombinants. In the network analysis, BF recombinants were located between clades B and F, and networks with recombinants were more reticulated than those without BF sequences. Thus, different phylogenetic inference methods corroborated the original identification of recombinants and other HIV-1 subtypes.

A low prevalence of HIV-1 subtype C (n=2, 1.2 %) was found, concordant with other reports [23, 54]. A recombinant BC strain was detected, to our knowledge, for the first time in the state of Pernambuco and for the second time in north-eastern Brazil, with the first reported in Salvador, Bahia [57]. The low prevalence of HIV-1 C in the north-eastern region contrasts with its high frequency in southern
Brazil; prevalence rates up to 63.9 % have been reported in Santa Catarina [63, 64]. Despite the low frequency in some parts of Brazil, several authors have shown its expansion to other regions [65–67].

To our knowledge, this is the first time that an AG recombinant has been detected in north-eastern Brazil. The strain was isolated in 2008 from a pregnant woman with a long-term infection. AG recombinants have been reported in other Brazilian regions; CRF02 AG was reported in Belém (northern region) [12], and several studies have found AG recombinants in Rio de Janeiro (south-eastern region). These studies include reports [15, 68, 69] showing multiple routes of transmissions and the gradual spread of AG recombinants.

Coalescent inferences of population size indicated that the introduction of subtype B occurred earlier in other regions of Brazil (the south-east) than in Pernambuco, corroborating previous data showing that HIV-1 was introduced into the country in Rio de Janeiro and São Paulo [70]. In addition, there was a significant increase in the frequency of HIV-1 F strains. These findings support the hypothesis that HIV-1 diversity is increasing in Brazil, with the spread of non-B subtypes, CRFs and URFs [71–75]. The subtype F population is expanding around the world and in Brazil. In addition, the introduction of subtype F in Pernambuco occurred later than in other parts of the country (1982, 95 % CI 1977–1986), while Bello et al. [76] estimated that this introduction in Brazil occurred in 1977 (95 % CI 1963–1988). Several hypotheses have been presented to explain the expansion of HIV-1 non-B subtypes in Pernambuco, such as the great economic growth in the state in the last decade (2001–2010) that resulted from industrial activity in the largest port in north-eastern Brazil, and the construction of refineries and petrochemical plants that may have affected population immigration (www.worldbank.org/pt/news/press-release/2013/06/25/wb-brazil-pernambucos-new-inclusive-growth-program-will-benefit-nine-million-residents). In addition, the metropolitan area of Recife (the state capital) has one of the main industrial plants and the largest service centre in the north-east, making it a hub for technology, medicine, academia and research. In addition, the state is a hub for tourism and culture (http://www2.recife.pe.gov.br/pagina/metropole-das-oportunidades).

Another factor that may have contributed to the increased incidence of non-B subtypes observed in the second sampling period (2007–2009) is a decrease in the frequency of MSM with the ‘heterosexualization’ of the HIV epidemic in Brazil [22]. The particular characteristics of the epidemic in this region may have repercussions on antiretroviral treatment strategies, disease progression, vaccine development and laboratory monitoring quality. Therefore, it is critical to continue characterizing non-B subtypes and examining their virus-host interactions.

Among the codons under positive selection, only codon 210 of RT has been directly associated with antiretroviral resistance. Codons under positive selective pressure were more frequent in individuals with T-cell counts >200 cells mm\(^{-3}\) and in HTS women. Leal et al. [77] showed that codons associated with antiretroviral therapies under positive selection could be detected in drug-naïve individuals; however, the intensity of positive selection is higher at these codons in individuals receiving antiretroviral therapy. Although Arenas [78] revealed that some PR inhibitors promoted adaptation (dN/dS), our data demonstrated that PR had fewer codons under selective pressure than RT. Two explanations are possible. First, when we obtained the samples for sequencing, nucleoside and non-nucleoside RT inhibitors were commonly used as first-line therapeutics. Second, when PR inhibitors were introduced as the first-line therapeutic regimen, lopinavir/ritonavir were the drugs used and these drugs showed little effect on the global dN/dS according to Arenas [78].

In summary, our study characterized HIV-1 strains between 2002 and 2009, and found an increase in circulating BF intersubtypes and nucleotide and codon diversity during the study period. These increases coincide with an increasing number of HIV cases detected in the region.

Funding information
This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Ministério da Educação (CAPES), Brazil (www.capes.gov.br).

Acknowledgements
We would like to thank health workers from the Hospital of the Federal University of Pernambuco and the VCTs for assistance and support. We also would like to thank all individuals who agreed to participate in the research.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References