Cryptococcus neoformans population diversity and clinical outcomes of HIV-associated cryptococcal meningitis patients in Zimbabwe

Tinashe K. Nyazika,1,2,3† Ferry Hagen,3† Tendai Machiridza,4 Melody Kutepa,5 Faith Masanganise,5 Marijke Hendrickx,6 Teun Boekhout,7 Tricia Magombei-Majinjiwa,2 Nonthokozo Siziba,2 Nyasha Chin’ombe,2 Kudzanai Mateveke,8 Jacques F. Meis3,9 and Valerie J. Robertson2

Correspondence
Tinashe K. Nyazika
tknyazika@gmail.com

1Department of Chemical Pathology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
2Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
3Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital (CWZ), Nijmegen, The Netherlands
4Department of Medicine, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
5Parirenyatwa Group of Hospitals, Causeway, Harare, Zimbabwe
6Section Mycology and Aerobiology, Scientific Institute of Public Health, Brussels, Belgium
7Department of Basidiomycetous & Yeast Research, CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands
8Research Support Centre, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe
9Radboudumc/CWZ Centre of Expertise in Mycology, Nijmegen, The Netherlands

HIV and cryptococcal meningitis co-infection is a major public health problem in most developing countries. Cryptococcus neoformans sensu stricto is responsible for the majority of HIV-associated cryptococcosis cases in sub-Saharan Africa. Despite the available information, little is known about cryptococcal population diversity and its association with clinical outcomes in patients with HIV-associated cryptococcal meningitis in sub-Saharan Africa. In a prospective cohort, we investigated the prevalence and clinical outcome of Cryptococcus neoformans sensu stricto meningitis among HIV-infected patients in Harare, Zimbabwe, and compared the genotypic diversity of the isolates with those collected from other parts of Africa. Molecular typing was done using amplified fragment length polymorphism genotyping and microsatellite typing. The majority of patients with HIV-associated Cryptococcus neoformans sensu stricto meningitis in this cohort were males (n=33/55; 60.0 %). The predominant Cryptococcus neoformans sensu stricto genotype among the Zimbabwean isolates was genotype AFLP1/VNI (n=40; 72.7 %), followed by AFLP1A/VNB/VNII (n=8; 14.6 %), and AFLP1B/VNII was the least isolated (n=7; 12.7 %). Most of the isolates were mating-type a (n=51; 92.7 %), and only four (7.3 %) were mating-type a. Overall in-hospital mortality was 55.6 % (n=30), and no difference between infecting genotype and clinical outcome of patient (P=0.73) or CD4+ counts (P=0.79) was observed. Zimbabwean Cryptococcus neoformans sensu stricto genotypes demonstrated a high level of genetic diversity

†These authors contributed equally to this work.

Abbreviations: AFLP, amplified fragment length polymorphism; ART, antiretroviral therapy; CM, cryptococcal meningitis; HAART, highly active antiretroviral therapy; MC, microsatellite cluster.

One supplementary table is available with the online Supplementary Material.
INTRODUCTION

The genus Cryptococcus, which belongs to the fungal phylum Basidiomycota, is polyphyletic and has been known for more than a century (Fonseca et al., 2011; Liu et al., 2015a, 2015b). Cryptococcus neoformans sensu stricto is ubiquitous in nature and can readily be isolated from air, soil and soils contaminated with pigeon guano and in avian habitats (Mitchell & Perfect, 1995). The HIV epidemic has raised the profile of Cryptococcus neoformans sensu stricto from a rare yeast to one of the most important fungal causes of morbidity and mortality worldwide. Cryptococcus neoformans sensu stricto is a major cause of HIV-associated cryptococcal meningitis (CM) globally (Hagen et al., 2015; Nyazika et al., 2016b).

Globally, an estimated 1 million cases of CM occur annually, with sub-Saharan Africa having the highest yearly burden with an estimate of 720 000 cases (Park et al., 2009). Prior to upscaling of antiretroviral therapy (ART), an estimated annual mortality of 500 000 cases occurred in sub-Saharan Africa as a result of CM (Park et al., 2009). Despite the increasing availability of ART, studies conducted in sub-Saharan Africa have demonstrated that acute mortality as a result of HIV-associated CM still remains above 40.0% (Beardsley et al., 2016; Boulware et al., 2014; Kambugu et al., 2008; Lessells et al., 2011; Makadzange et al., 2010; Nyazika et al., 2016a).

Cryptococcus neoformans sensu stricto genotypes AFLP1/VNI and AFLP1B/VNII are widely distributed throughout the world, with AFLP1/VNI being the major cause of CM in HIV-infected individuals (Cogliati, 2013; Hagen et al., 2015). The genotype AFLP1A/VNB/VNII appears to be endemic in Africa; there are increasing reports that it might have a global distribution (Cogliati, 2013). However, the epidemiology seems to be changing with the rise of Cryptococcus gattii sensu lato cases observed in some African studies (Litvinseva et al., 2005; Nyazika et al., 2016b). Studies conducted on the African continent have found some of the Cryptococcus neoformans sensu stricto genotypes and their mating types to be associated with clinical outcome in patients with HIV-associated CM (Beale et al., 2015; Hagen et al., 2015; Wiesner et al., 2012). Despite the available information, little is known about Cryptococcus neoformans population diversity, prevalence and its association with clinical outcomes in patients with HIV-associated CM living in sub-Saharan Africa. Therefore, we investigated the genetic diversity of Cryptococcus neoformans isolates and clinical outcomes of Zimbabwean patients with HIV-associated CM. In addition, the genetic diversity of Cryptococcus neoformans from the current cohort was compared by microsatellite typing with that of isolates collected from other countries within the sub-Saharan Africa.

METHODS

Patients and isolates. A total of 100 consenting HIV-infected adult inpatients from Parirenyatwa Group of Hospitals (Harare, Zimbabwe) presenting with signs and symptoms of meningitis were enrolled into the cohort study between June 2013 and September 2014. Information on patient demographic data, clinical data and length of hospital stay and diagnostic test results was collected. Cerebrospinal fluid from patients was tested using a cryptococcal antigen lateral flow assay (IMMY Diagnostics) and Indian ink staining and plated onto Sabouraud dextrose agar supplemented with chloramphenicol (0.5 g l−1) (Oxoid). Seventy-four cerebrospinal fluid samples were culture positive and were suggestive of Cryptococcus species after 7 days of incubation. These isolates were then subjected to biotyping, and 66 of 74 could be revived by the receiving laboratory for molecular typing.

Biotyping of Cryptococcus isolates. Two-day-old Cryptococcus isolates grown onto Sabouraud dextrose agar supplemented with 0.4 g chloramphenicol (Oxoid) were biotyped using L-canavanine glycine bromothymol blue thymine media (all Sigma-Aldrich). The culture plates were incubated at 25 °C for 5 to 10 days. All three biotyping media were prepared according to previously described standard protocols (Chaskes et al., 2008; Irokanulo et al., 1994; Kwon-Chung et al., 1982). Candida albicans ATCC 10231, Candida parapsilosis ATCC 22019 and Cryptococcus neoformans ATCC 204092 were used as quality control strains.

Genomic DNA extraction, amplified fragment length polymorphism genotyping and mating typing. Genomic DNA was extracted from 2-day-old sabouraud dextrose agar with chloramphenicol (SAB+C) cultures of Cryptococcus isolates. Cryptococcus cells were suspended in 400 μl bacterial lysis buffer followed by bead beating in Green Beads tubes with a MagNA Lyser for 30 s at 6500 r.p.m. (Roche Diagnostics). The lysed material was heat inactivated for 15 min at 100 °C, and 200 μl of the suspension was transferred to a 96 DeepWell plate. Automatic DNA extraction on a MagNA Pure 96 platform was performed using the Pathogen 200 protocol with a final elution volume of 100 μl (Roche Diagnostics).

Amplified fragment length polymorphism (AFLP) genotyping was performed on the Cryptococcus genomic DNA according to previously described protocols (Boekhout et al., 2001; Illnait-Zaragozi et al., 2010). The following reference strains were included in AFLP genotyping: 125.91 and H99 (both Cryptococcus neoformans sensu stricto AFLP1/VNI), B1 (Cryptococcus neoformans sensu stricto AFLP1A/VNB/VNII), WM626 (Cryptococcus neoformans sensu stricto AFLP1B/VNII), JEC20 and JEC21 (both Cryptococcus deneoformans AFLP2/VNIV), CBS132 and WM629 (both Cryptococcus neoformans×Cryptococcus deneoformans AFLP3/VNIII), WM179 (Cryptococcus gattii sensu stricto AFLP4/VGI), WM161 (Cryptococcus bacillisporus AFLP5/VGII), WM178 (Cryptococcus deuterogattii AFLP6/VGII), WM779 (Cryptococcus tetragattii AFLP7/VGIV) and IHEM14941 (Cryptococcus decagattii AFLP10/VGIV) (Hagen et al., 2012, 2015).
The Cryptococcus neoformans sensu stricto reference strains 125.91 (CBS 10512; αA; AFLP1/VNI) and H99 (CBS 8710; αA; AFLP1/VNI) and Cryptococcus deneoformans reference strains JEC20 (CBS 10511; αD; AFLP2/VNIV) and JEC21 (CBS 10513; αD; AFLP2/VNIV) were included as controls.

Microsatellite typing. The genetic relatedness of the Cryptococcus neoformans isolates was investigated using microsatellite typing as previously described by Illnait-Zaragozi et al. (2010). A set of 86 Cryptococcus neoformans isolates previously obtained from clinical, environmental and veterinary sources collected from neighbouring African countries, as well as from Belgian patients with cryptococcosis who visited African countries, were included (Table S1, available in the online Supplementary Material). Fragment analysis was performed on an ABI3500xL Genetic Analyser platform (Applied Biosystems) after the multiplex PCR amplicons were diluted 100 times, and 1 µl of this dilution was mixed with 0.1 µl LIZ600 (Applied Biosystems) and 8.9 µl ddH2O followed by a 1 min heating step at 100 °C. Raw data were analysed with the GeneMapper software package v1.0 (Applied Biosystems), and the obtained microsatellite profiles were imported into Bionumerics v7.5 (Applied Maths); the data were treated as categorical values to generate a minimum spanning tree. The genetic diversity was calculated by using the Simpson’s diversity index (D) that results in a value ranging from 0 to 1, indicating that either all isolates are the same (D=0) or all isolates are different (D=1) (Illnait-Zaragozi et al., 2010). The index of association (lA) and θA, indicators for the presence of clonality or recombination, were calculated by using Multilocus v1.3b program on a clone-corrected dataset and tested against 100 000 artificially recombed datasets (Agapow & Burt, 2001; Hiremath et al., 2008).

Ethical approval. Institutional ethical approval for the study was obtained from the Joint Research Ethics Committee of the Parirenyatwa Group of Hospitals (Harare, Zimbabwe) and the College of Health Sciences, the Institutional Review Board of the Biomedical Research Training Institute, the Medical Research Council of Zimbabwe and Research Council of Zimbabwe. Informed written patient consent was obtained, and demographic data were collected. Patients were followed up until they were discharged or deceased.

Statistical analysis. Data were analysed as follows: categorical data (gender of the patient, Cryptococcus neoformans genotype and patient clinical outcome) were presented as frequencies, while continuous data (CD4 cell count, age of participants and duration of symptoms) were presented using means (SD) and median (interquartile range). Comparisons of CD4* count (continuous) by the Cryptococcus neoformans genotype and highly active antiretroviral therapy (HAART) status were analysed using Kruskal–Wallis ANOVA. Fisher’s exact test statistic was used to compare clinical outcomes of patients infected with the different genotypes of Cryptococcus neoformans sensu stricto. Multivariate analysis was used to determine factors that were associated with the patient clinical outcome. All statistical analyses were performed using the Stata software v13 (StataCorp). P<0.05 was considered as statistically significant, and observations with missing values were excluded from the analysis.

RESULTS

Demographic characteristics of the study population

In a cohort of patients with HIV-associated Cryptococcus neoformans sensu stricto meningitis, the majority (n=33/55; 60.0 %) were males. The age of the patients ranged from 18 to 58 years with a median age of 36 years. All but one of the patients (n=54/55; 98.2 %) were admitted with headache and were treated empirically with 1 g ceftriaxone (n=51/54; 94.4 %) before final diagnosis of CM was made. This is summarized in Table 1.

Differences in CD4* counts between the HAART-naïve and -experienced patients

Among the patients with Cryptococcus neoformans sensu stricto meningitis, 54.5 % (n=30/55) were on HAART, and the rest were HAART naïve. Of the 55 patients, 47 had a CD4* cell count done. Forty-one (87.2 %) patients were severely immunocompromised, and their CD4* cell counts were ≤50 cells mm−3. Two (4.3 %) patients had a CD4* cell count greater than 100, which is rare with HIV-associated CM, and there was no adequate clinical information to explain this phenomenon. The difference between median CD4* cell counts of patients with HIV-associated CM on HAART and those who were HAART naïve was not statistically significant (χ²=0.078; P=0.78).

Prevalence of genotypes, mating type and association of genotype and CD4* count

Of the 74 isolates, 14 were identified to be Cryptococcus gattii sensu lato and 60 were identified to be Cryptococcus neoformans sensu lato on both L-canavanine glycine bromothymol blue and yeast carbon base D-proline D-tryptophan biotyping media. Sixty-six isolates were available for molecular analysis, as 8 isolates could not be revived by the receiving laboratory and included 55 (83.3 %) Cryptococcus neoformans sensu lato isolates and 11 (16.7 %) Cryptococcus gattii sensu lato isolates of which one isolate contained two phenotypic different colony types (Nyazika et al., 2016a). Upon genotyping 55 of the Cryptococcus neoformans sensu lato isolates, Cryptococcus neoformans sensu stricto genotype AFLP1/VNI was the most prevalent (n=40; 72.7 %), followed by AFLP1A/VNB/VNII (n=8; 14.6 %) and AFLP1B/VNII (n=7; 12.7 %) (Fig. 1). The majority of the Cryptococcus neoformans sensu lato isolates were mating-type α (n=51; 92.7 %), and only four (7.3 %) were mating-type a. The in-depth molecular characterization of the Cryptococcus gattii sensu lato isolates has recently been described elsewhere (Nyazika et al., 2016a). The median CD4* of patients with genotype AFLP1/VNI was 23 (12–35), genotype AFLP1A/VNB/VNII was 22 (13.5–36) and that of AFLP1B/VNII was 26 (15–66) cells mm−3. There was no

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Patients, n=55 (%)</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>54 (98.2)</td>
<td>36 (30–43)</td>
</tr>
<tr>
<td>Headache duration (days)</td>
<td>54 (98.2)</td>
<td>14 (7–21)</td>
</tr>
<tr>
<td>CD4* cell count (cells mm−3)</td>
<td>47 (87.5)</td>
<td>24 (12–40)</td>
</tr>
<tr>
<td>Weeks since HIV diagnosis</td>
<td>54 (98.2)</td>
<td>8 (2–104)</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>54 (98.2)</td>
<td>17.5 (10–22)</td>
</tr>
</tbody>
</table>

IQR, interquartile range.
significant difference in CD4+ count among patients infected with the different genotypes of Cryptococcus neoformans sensu stricto ($\chi^2=0.46; P=0.79$).

The association of Cryptococcus neoformans sensu stricto genotype and clinical outcome of patients

The overall in-hospital mortality in the study was 30 (55.6%) of 54; one patient was lost to follow-up. The in-hospital mortality for patients infected with genotype AFLP1/VNI was 22/39 (56.4%); AFLP1A/VNB/VNII 5/8 (62.5%); and AFLP1B/VNII 3/7 (42.9%). The frequency distribution of cryptococcal genotype by patient outcome is summarized in Table 2. There was no significant difference between the genotypes and clinical outcome ($\chi^2=0.62; P=0.73$). Using logistic regression analysis, factors associated with discharge of a patient were length of hospital stay (odds ratio, 1.09; 95% confidence interval, 1.011–1.181) and being on HAART (odds ratio, 0.21; 95% confidence interval, 0.047–0.95) after controlling for age and gender.

Genetic relatedness of Zimbabwean and other African Cryptococcus neoformans sensu stricto isolates

One hundred and forty-one Cryptococcus neoformans isolates were genotyped using AFLP and microsatellite typing methods. The relationship between different genotypes and sources is shown in Fig. 2. There was a large genotypic diversity among the different Cryptococcus neoformans sensu stricto isolated from various African countries. Genotypes were recognized and indicated as microsatellite complexes. Five microsatellite clusters (MCs) could be observed (Fig. 2a, indicated with a grey shadow), which contain at least three isolates that do not differ more than one of nine microsatellite loci from each other. The two largest MCs contain Zimbabwean isolates from the current study, as well as isolates obtained during a previous study in the 1990s. The largest MC contains isolates that have (nearly) identical microsatellite profiles but were obtained from different geographic sites (Fig. 2a). No statistically significant correlation was observed between microsatellite profiles and genotype AFLP1A/VNB/VNII or AFLP1B/VNII isolates, although the two largest MCs contain solely isolates with genotype AFLP1/VNI (Fig. 2b). Similarly, no statistically significant correlation was observed between microsatellite profiles and the background of the studied isolates; nevertheless, nearly all environmental isolates clustered together in the second-largest MC (Fig. 2c). The Simpson’s diversity index was 0.9930 for all the African isolates ($n=141$) with 101 genotypes, and the Zimbabwean Cryptococcus neoformans sensu stricto had 51 genotypes present with a Simpson’s diversity index of 0.9953 (Table 3). The observed values for the linkage disequilibrium index I_A and the less biased index \hat{r}_d were found to be significant ($P<0.0001$); the H₀ hypothesis that there is no linkage among markers was rejected, which indicates a clonal population (Table 3).

Table 2. Distribution of Cryptococcus neoformans genotypes and outcome of patient

<table>
<thead>
<tr>
<th>Cryptococcus genotype</th>
<th>Outcome</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Death, n (%)</td>
<td>Discharge, n (%)</td>
</tr>
<tr>
<td>AFLP1/VNI</td>
<td>22 (56.4)</td>
<td>17 (43.6)</td>
</tr>
<tr>
<td>AFLP1A/VNB/VNII</td>
<td>5 (62.5)</td>
<td>3 (37.5)</td>
</tr>
<tr>
<td>AFLP1B/VNII</td>
<td>3 (42.9)</td>
<td>4 (57.1)</td>
</tr>
</tbody>
</table>

$\chi^2=0.62$.

Table 3. Simpson’s diversity index and linkage disequilibrium

<table>
<thead>
<tr>
<th></th>
<th>$n_{isolates}$</th>
<th>$n_{genotypes}$</th>
<th>Simpson’s D</th>
<th>Index of association (P value)</th>
<th>\hat{r}_d (P value)</th>
<th>Isolates from study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>141</td>
<td>103</td>
<td>0.9930</td>
<td>2.19535 (<0.0001)</td>
<td>0.297743 (<0.0001)</td>
<td>This study</td>
</tr>
<tr>
<td>Zimbabwe (current study)</td>
<td>55</td>
<td>51</td>
<td>0.9953</td>
<td>1.95722 (<0.0001)</td>
<td>0.267281 (<0.0001)</td>
<td>This study</td>
</tr>
<tr>
<td>D.R. Congo</td>
<td>20</td>
<td>12</td>
<td>0.9211</td>
<td>5.58276 (<0.0001)</td>
<td>0.798087 (<0.0001)</td>
<td>Swinne et al. (1986)</td>
</tr>
<tr>
<td>Rwanda</td>
<td>26</td>
<td>22</td>
<td>0.9846</td>
<td>3.79816 (<0.0001)</td>
<td>0.518182 (<0.0001)</td>
<td>Bogaerts et al. (1999)</td>
</tr>
</tbody>
</table>
DISCUSSION

Cryptococcus neoformans sensu stricto is the most common causative agent of HIV-associated CM in people living in sub-Saharan African countries, where it accounts for more than 500,000 deaths per year before the upscaling of ART (Beale et al., 2015; Kangogo et al., 2015; Litvintseva et al., 2005; Nyazika et al., 2016b; Park et al., 2009). Several studies have been conducted within the sub-Saharan region on the molecular epidemiology of Cryptococcus neoformans, but limited data are available from Zimbabwe (Beale et al., 2015; Kangogo et al., 2015; Litvintseva et al., 2005; Van Wyk et al., 2014). This is the first report to our knowledge to describe the population diversity of Cryptococcus neoformans sensu stricto among a cohort of HIV-associated CM patients living in Zimbabwe.

The median age of the cohort was 36 years with an age range of 18 to 58 years, and this is similar to that found in previous studies conducted in Zimbabwe (Hakim et al., 2000; Heyderman et al., 1998; Makadzange et al., 2010). Worldwide, it has generally been observed that CM mainly affects people between the ages of 20 and 50 years (Day, 2004). In this study, it was also observed that there were more males (57%) affected compared to females, and similar findings were observed in other major studies conducted in Zimbabwe (Hakim et al., 2000; Heyderman et al., 1998; Jarvis et al., 2010; Makadzange et al., 2010). The difference in the infection rates between males and females is thought to be influenced by the gender-specific host immune response, although this phenomenon is not well studied (McClelland et al., 2013).

Fifty-five (83.3%) Cryptococcus neoformans clinical isolates were available for molecular epidemiological investigations, and the majority of the isolates were of genotype AFLP1/VNI (72.7%), followed by genotype AFLP1A/VNB/VNII with a prevalence of 14.6%. The lowest number of isolates from this cohort of patients was Cryptococcus neoformans genotype AFLP1B/VNII (12.7%). These observations were consistent with those from studies conducted in South Africa.
(Beale et al., 2015; Van Wyk et al., 2014). Cryptococcus neo-
formans AFLP1/VNI genotype has a global distribution, con-
trary to the genotypes AFLP1B/VNII and AFLP1A/VNB/
VNI that tend to be restricted to the African continent
(Cogliati, 2013). Little is known about the clinical course of
infections caused by Cryptococcus neoformans genotypes
AFLP1B/VNII and AFLP1A/VNB/VNII. The majority of the
isolates were mating-type a ($n=51$; 92.7%), and only four
(7.3%) were mating-type a. The second highest African
prevalence of mating-type a was found among the Zimbab-
wean isolates, and this was consistent with findings from
Botswana ($n=14/139$; 10.1%) (Litvintseva et al., 2003). The
high prevalence of mating-type a in the African population
suggests the possibility of recombination of these genotypes
within the environment. Surprisingly, the linkage disequi-
lbrium tests (I_A and r_d) were observed to be highly significant,
which indicates that it is less likely that recombination is
playing a role in the studied Cryptococcus neoformans sensu
stricto population (Table 3). However, the Simpson’s diver-
sity index shows that there is high genetic diversity, which is
in contradiction with the outcome of the I_A and r_d tests. A
similar observation was recently described in a population
study that included isolates from Botswana; both clonality
and recombination were observed with different approaches
(Chen et al., 2015).

The majority of patients ($n=54/55$; 98.2%) infected with
Cryptococcus neoformans sensu stricto presented with severe
headache having a median duration lasting 14 days, and this
was consistent with other studies (Heyderman et al., 1998;
Makadzange et al., 2010; McCarthy et al., 2006). It was not
possible to determine viral loads which would have given
a broader assessment of immunological suppression. The
CD4$^+$ count of HAART-experienced and -naive patients
was similar when compared statistically ($P=0.78$). There
was also no difference observed in the CD4$^+$ counts of
patients infected with the different genotypes of Cryptococ-
cus neoformans sensu stricto ($P=0.79$).

The patients had a median hospital stay (interquartile
range) of 16 (11–23) days that was consistent with findings
from other cohorts and observational studies from South
Africa and Zambia (Mwaba et al., 2001; Sogbanmu et al.,
2014). This usually reflects complications in the manage-
ment of CM patients. An overall in-hospital mortality of
55.6% was observed among the HIV-associated CM co-
infected patients in this study. The in-hospital mortality was
high when compared with other studies done locally and
those performed within the region that recorded mortality
rates between 27.0% and 47.0% (Beale et al., 2015;
Beardsley et al., 2016; Hakim et al., 2000; Kambugu et al.,
2008; McCarthy et al., 2006). Most likely, the mortality rate
in this study could have risen if the patients were followed
up for a longer period of time as outpatients.

In this study, we did not observe an association between
different genotypes of the Zimbabwean Cryptococcus neo-
formans isolates and patient clinical outcome, as was demon-
strated in other studies done in sub-Saharan Africa
(Wiesner et al., 2012; Beale et al., 2015). However, despite
the small group of patients available for analysis, the length
of hospital stay and being on HAART were statistically sig-
nificantly associated with the patient clinical outcome.

Patients on HAART were more likely to die compared to
those not on HAART. These findings demonstrate that
mortality as a result of HIV-associated CM is still a major
problem in Zimbabwe, despite the availability of antiretro-
viral and antifungal therapy.

A nine-marker microsatellite typing panel was used to fur-
ther sub-genotype the Cryptococcus neoformans isolates
from Zimbabwe to infer comparisons to other parts of
Africa. Microsatellite typing is a highly discriminatory typ-
ing approach, and it allows Cryptococcus neoformans isolates
from different origins to be distinguished (Illnait-Zaragozi
et al., 2010). Our findings demonstrate that some genotypes
of Cryptococcus neoformans were more closely related to
each other than to other genotypes. Interestingly, we also
found a high genetic diversity among the Zimbabwean iso-
lates themselves, as well as when they were compared with
Cryptococcus neoformans isolates collected from different
parts of Africa (Bogaerts et al., 1999; Swinne et al., 1986,
1989, 1991). We were unable to find a link between MCs
and Cryptococcus neoformans sensu stricto AFLP genotypes;
this might be due to presence of recombination within and
among genotypes AFLP1/VNI, AFLP1A/VNB/VNII and
AFLP1B/VNII. A similar observation was made in a Dutch
set of 245 clinical Cryptococcus neoformans sensu stricto iso-
lates, although only seven isolates were genotype AFLP1B/
VNI; no significant correlation was found despite that
these isolates were grouped together (Hagen et al., 2012).

In summary, this study presents the first molecular epide-
miological survey in Africa to compare the genotypic diver-
sity of Cryptococcus neoformans sensu stricto from clinical,
environment and veterinary samples. We also present data
on the prevalence of Cryptococcus neoformans sensu stricto
genotypes and their mating types among HIV-infected sub-
jects in Zimbabwe. It appears that Zimbabwean Cryptococ-
cus neoformans sensu stricto clinical genotypes are highly
polymorphic, and the presence of both mating types a and
a suggests a possibility of recombination of these genotypes
within the patient and/or environment.

ACKNOWLEDGEMENTS

This work was supported by grant number 2U2RTW007367 from the
Fogarty International Centre, National Institutes of Health (Bethesda,
MD, USA), through the International Clinical, Operational and
Health Services and Training Award and grant number ‘HIVRT15-
065’ from the HIV Research Trust. The authors would also like to
thank the CryptoZim group for their technical assistance. Finally,
we would like to extend our gratitude to the staff of the Departments
of Chemical Pathology and Medical Microbiology, College of Health
Sciences, University of Zimbabwe, for all the support they gave
throughout the whole project. J.F.M. received grants from Astellas,
Basilea and Merck. He has been a consultant to Astellas, Basilea
and Merck and received speaker’s fees from Merck, United Medical
and Gilead Sciences. All other authors declare no conflict of interest.
REFERENCES

meningitis in Zambian AIDS patients treated under local conditions.
Postgrad Med J 77, 769–773.

Cryptococcus tetragattii as a major cause of cryptococcal meningitis
among HIV-infected individuals in Harare, Zimbabwe. J Infect 72,
745–752.

Nyazika, T. K., Robertson, V. J., Nherera, B., Mapondera, P., Meis, J. F.
& Hagen, F. (2016b). Comparison of biotyping methods as alternative
identification tools to molecular typing of pathogenic Cryptococcus
species in sub-Saharan Africa. Mycoses 59, 151–156.

Park, B. J., Wannemuehler, K. A., Marston, B. J., Govender, N.,
burden of cryptococcal meningitis among persons living with HIV/AIDS.
AIDS 23, 525–530.

cryptococcal meningitis in adults at Mthatha Hospital Complex, Eastern

Swinne, D., Nkurikiyinshu, J. B. & Muyembe, T. L. (1986). Clinical iso-

Isolation of Cryptococcus neoformans from houses of AIDS-associated cryp-

Swinne, D., Deppner, M., Maniratunga, S., Laroche, R., Floch, J. J. &

Van Wyk, M., Govender, N. P., Mitchell, T. G., Litvintseva, A. P. &
GERMS-SA (2014). Multilocus sequence typing of serially collected iso-
lates of Cryptococcus from HIV-infected patients in South Africa. J Clin
Microbiol 52, 1921–1931.

Wiesner, D. L., Moskalenko, O., Corcoran, J. M., McDonald, T.,
Rolfes, M. A., Meya, D. B., Kajumbula, H., Kambugu, A.,
Bohjanen, P. R. & other authors (2012). Cryptococcal genotype influ-
ences immunologic response and human clinical outcome after meningitis.
MBio 3, e00196-12.