Patterns of EPIYA motifs among \textit{cagA}-positive \textit{Helicobacter pylori} strains: a case–control study in a Turkish population with Eurasian geographical features

Bekir Sami Kocazeybek,1 Reyhan Caliskan,1 Sibel Erdamar Cetin,2 Sevgi Ergin,1 Mert Kuskucu,1 Nuray Kepil,2 Harika Oyku Dinc,1 Yusuf Ziya Erzin,3 Suat Saribas,1 Hrisi Bahar Tokman,1 Fatma Kalayci,1 Ozer Akgul,1 Pelin Yuksel,1 Asiye Karakullukcu,1 Tevhide Ziver,1 Serhat Sirekbasan,1 Erkan Caglar3 and Kadir Bai3

Correspondence
Bekir Sami Kocazeybek
bzeybek@istanbul.edu.tr

1Department of Medical Microbiology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
2Department of Medical Pathology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
3Department of Gastroenterology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey

Geographical variation in the frequency of various gastroduodenal pathologies was shown to be related to the geographical diversity of \textit{H. pylori} CagA Glu-Pro-Ile-Tyr-Ala (EPIYA) patterns. We examined the EPIYA patterns of \textit{H. pylori} and the association of EPIYA patterns with gastric cancer (GC) for the first time, to the best of our knowledge, in Turkey. The patient group (PG) contained 60 patients [38 GC and 22 duodenal ulcer (DU) patients]. The control group (CG) was 110 individuals [94 gastritis patients and 16 persons with a normal gastrointestinal system (NGIS)]. Specific primers were used for the detection of \textit{cagA} including empty-site-positive and EPIYA-A, -B, -C, -D PCR. Bands of EPIYA-A, -B, -C were confirmed by DNA sequencing. One hundred and forty-two (83.5 \%) strains [60 in the PG (38 GC, 22 DU), 82 in the CG (72 gastritis, 10 NGIS)] were positive for the \textit{cagA} gene. EPIYA-C with multiple repeats was detected in 34 (23.9 \%) strains, and 22 (64.7 \%) were from GC patients. EPIYA-C with one repeat was detected in 89 (62.7 \%) strains, and 54 (60.7 \%) were from gastritis patients. EPIYT was detected in 10 strains, and EPIYA-D was not detected. The number of EPIYA-C with multiple repeats was significantly higher for the PG than for the CG (\(P<0.0001\)). In GC patients, the number of EPIYA-C with multiple repeats was significantly higher than one repeat (\(P<0.0001\)). In conclusion, our study showed that multiple EPIYA-C repeats increases the GC risk by 30.6-fold and the DU risk by 8.9-fold versus the CG. This indicates that Western-type \textit{H. pylori} strains in Turkey have similar EPIYA motifs to those of neighbouring countries and Western populations.

\textbf{INTRODUCTION}

\textit{Helicobacter pylori} is the principal cause of gastritis and gastric or duodenal ulcer (DU) diseases and is involved in the development of gastric cancer (GC) and mucosa-associated lymphoid tissue lymphoma (Atherton, 2006).

\textbf{Abbreviations:} cagPAI, \textit{cag} pathogenicity island; CG, control group; CI, confidence interval; DU, duodenal ulcer; EPIYA, Glu-Pro-Ile-Tyr-Ala; CagA, cytotoxin-associated gene A; GC, gastric cancer; NGIS, normal gastrointestinal system; PG, patient group; OR, odds ratio.

\textit{H. pylori} is a class 1 carcinogen identified by the International Agency for Research on Cancer for chronic and persistent infections. It is resistant to antibacterial agents in spite of innate and adaptive immunity (International Agency for Research on Cancer, 1994). Depending on virulence factors such as cytotoxin-associated gene A (CagA), blood group antigen-binding adhesion (BabA2) and vacuolating cytotoxin gene A (VacA), different genotypes cause different pathological and clinical outcomes and geographical regional differences (Atherton \textit{et al.}, 1995; Basso \textit{et al.}, 2008). Recently, the Glu-Pro-Ile-Tyr-Ala (EPIYA)
pattern of CagA was suggested to be involved in the pathogenesis of GC, as this pattern manifests important variations depending on the region (Argent et al., 2004, 2005).

The CagA protein is injected into host epithelial cells with its peptidoglycan by a type IV secretion system encoded by the
\textit{cag} pathogenicity island (\textit{cagPAI}). The \textit{cagA} gene has a C-terminal region with a motif of five amino acid residues – glutamic acid-proline-isoleucine-tyrosine-alanine – which is designated the EPIYA motif. The tyrosine residue is the target of phosphorylation. The EPIYA motif plays an important role in the relationships of CagA with membrane and tyrosine phosphorylation (Akopyants et al., 1998; Higashi et al., 2002). There are four types of EPIYA segments: EPIYA-A,-B,-C and -D. Based on amino acid sequences, the EPIYA-C segment is hypothesized to be characteristic of CagA of \textit{H. pylori} in Western countries, while the EPIYA-D segment is specific to CagA of \textit{H. pylori} in Eastern countries (Panayotopoulou et al., 2007). Several researchers have indicated that \textit{H. pylori} strains with EPIYA-C and -D repeats are significantly associated with GC and atrophic gastritis (Yamaoka et al., 1998; Azuma et al., 2002; Batista et al., 2011).

In Turkey, the GC incidence was reported as 21.6 and 8.6 per 10 000 of the population among men and women, respectively (Basara et al., 2013). Unfortunately, we do not have any data about the increased GC risk due to EPIYA patterns in Turkey. In two Turkish studies, Kucukoner et al. (2013) and Celik et al. (2015) found 53.9 and 72.1 % \textit{H. pylori} positivity for GC and gastric cardia tumours, respectively.

In this study, our goal was to determine the EPIYA patterns of \textit{cagA}-positive \textit{H. pylori} strains isolated from patients and controls with different endoscopic diagnoses living in Istanbul and to evaluate the association between the patterns of EPIYA motifs and these endoscopic diagnoses. The present study is of utmost importance for investigating the \textit{H. pylori} EPIYA patterns and their clinical outcomes in Turkey, especially for the first time, to the best of our knowledge, for GC.

METHODS

Study design and patients. This case–control study was conducted between November 2011 and December 2012. The patient group (PG), comprising a total of 60 patients (38 GC and 22 DU patients; 34 male, 26 female; mean age 51.7 years; age range 29–81 years), and a control group (CG), comprising a total of 110 individuals (94 gastritis patients and 16 persons with normal gastrointestinal system [NGIS]; 59 male, 51 female; mean age 49.9 years; age range 18–78 years) were enrolled in this study. The CG was matched with the PG according to the age and gender distribution of the PG ($P > 0.05$). In the CG, 110 \textit{H. pylori} strains (from gastritis patients and persons with NGIS) were isolated from the antrum and corpus biopsy specimens. For the PG, paraffin blocks of 38 cases with GC and 22 cases with DU with positive \textit{H. pylori} were obtained by screening the archives. We excluded patients who were under 18 years, had had previous gastric surgery and \textit{H. pylori} eradication treatment, or had a history of therapy with antibiotics, antisecretory drugs, bismuth salts or sucralfate in the month prior to sampling.

The study was approved by the Clinical Research Ethics Board of Istanbul University, Cerrahpasa Faculty of Medicine (Ethical approval; 4548/9 February 2011). All patients gave informed consent to participate in the study.

PCR

\textit{H. pylori} DNA extraction from strains and paraffin blocks

Genomic DNA extraction (Real Genomics Quality Nucleic Acid/Purification system; RBC Bioscience Laboratories) and QIAamp DNA mini prep kits (Qiagen) were used according to the manufacturer’s instructions for DNA extractions from \textit{H. pylori} strains and paraffin blocks, respectively.

\textit{ureC} gene detection in \textit{H. pylori}

An \textit{H. pylori}-QLS 1.0 kit (Fluorion) was used to detect 156 bp of the \textit{ureC} gene in DNA extractions of \textit{H. pylori} strains and paraffin blocks.

Table 1. PCR primers used in this study

All PCRs were performed in a 50 μl final volume with 1.25 U \textit{Taq} polymerase (Thermo Scientific), 1× PCR buffer, 3 μl 250 mM MgCl2 and 1 μl dNTP mix (10 mM each) with the described primers using the thermal profiles detailed.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Primer sequence (5′→3′)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{cagA}-F</td>
<td>GATAACAGGCACCATTTGAGG*</td>
<td>Erzin et al. (2006); van Doorn et al. (1998)</td>
</tr>
<tr>
<td>\textit{cagA}-R</td>
<td>CTCGAAAGATGGTTGCGAGA*</td>
<td></td>
</tr>
<tr>
<td>\textit{cagA}28F</td>
<td>TTCTCAGAGGCACATGGC†</td>
<td>Argent et al. (2005)</td>
</tr>
<tr>
<td>\textit{cagA}-P1C</td>
<td>GTCCCTGCTTTCTTTATTAACCTKAGC†</td>
<td></td>
</tr>
<tr>
<td>\textit{cagA}-P2G</td>
<td>TTTAGCCACCTTGGACTAATGGG†</td>
<td></td>
</tr>
<tr>
<td>\textit{cagA}-P2TA</td>
<td>TTTAGCAACCTTGGTATAATGGG†</td>
<td></td>
</tr>
<tr>
<td>\textit{cagA}-P3E</td>
<td>ATCAATTGTAGGGTAAATGGG†</td>
<td></td>
</tr>
<tr>
<td>\textit{cag empty} PCR</td>
<td>GCCTGCTTGTATTGCGCTTG/ GCAATGCCACATTCCCTAAGT‡</td>
<td>Occhialini et al. (2001)</td>
</tr>
</tbody>
</table>

*95 °C for 2 min initial denaturation, followed by 45 cycles of 30 s at 95 °C, 45 s at 53 °C and 45 s at 72 °C, with a final elongation step performed for 5 min at 72 °C.
†95 °C for 2 min initial denaturation, followed by 50 cycles of 30 s at 95 °C, 45 s at 57 °C and 35 s at 72 °C, with a final elongation step performed for 5 min at 72 °C.
‡95 °C for 2 min initial denaturation, followed by 40 cycles of 30 s at 95 °C, 30 s at 57 °C, 20 s at 72 °C, with a final elongation step performed for 5 min at 72 °C.
blocks according to the manufacturer’s instructions (He et al., 2002).

Amplification of the H. pylori cagA gene
Previously described primers were used to detect the *H. pylori* cagA gene (349 bp) (Table 1) (van Doorn et al., 1998; Erzin et al., 2006). For this, the protocol was as follows: initial denaturation at 95 °C for 2 min, followed by 45 cycles of 95 °C for 30 s, 45 s at 53 °C and 45 s at 72 °C. The final elongation was at 5 min at 72 °C.

Amplification and typing of EPIYA motifs in the cagA 3’ variable region
Previously described primers [forward (cagA28F) and reverse (cagA-P1C, cagA-P2CG, cagA-P2TA and cagA-P3E)] were used to amplify DNA for EPIYA-A, -B, -C and –D, respectively (Table 1) (Argent et al., 2005). For this, the PCR protocol was as follows: initial denaturation at 95 °C for 2 min, followed by 50 cycles of 30 s at 95 °C, 45 s at 57 °C and 35 s at 72 °C. The final elongation step was at 5 min at 72 °C. After the PCR amplification, PCR products were sequenced bidirectionally using a Sequence Reagent Mix kit (DYEnamic ET Terminator Cycle Sequencing kit; GE Healthcare) with an ABI 310 (Applied Biosystems) automatic sequencing machine.

Empty-site PCR
All strains negative for EPIYA PCR were confirmed as being true CagA negative by performing an empty-site-positive PCR assay (Occhialini et al., 2001). To confirm cagPAI in all of the strains, amplification was performed with two primers (forward 468 HP519 and reverse 496 HP549) located in the two genes flanking the cagPAI in the reference strains (HP519 and HP549) (Table 1, cag empty PCR). The PCR protocol was as follows: initial denaturation at 95 °C for 2 min followed by 40 cycles of 30 s at 95 °C, 30 s at 57 °C, and 20 s and 45 s at 72 °C. The final elongation step was performed for 5 min at 72 °C.

Statistical analyses. The Pearson χ^2 test was used to compare the PG and CG for the presence of one or more EPIYA-C repeats. The Pearson χ^2 test and Fisher’s exact test were used to compare one or more EPIYA-C repeats for GC and DU cases of the PG, respectively. In our study, the risk factor determination of the PG (GC and DU cases) was performed according to the multivariate analysis. All analyses were performed using the spss 21.0 (SPSS) package program. The gender, age and one or more EPIYA-C repeats were included as independent variables in multivariate analysis by logistic regression test. The odds ratio (OR) operation was calculated to evaluate the increase in the risk of DU or GC in terms of EPIYA-C repeats. Significance values were defined as $P<0.05$; $P<0.001$ was considered highly statistically significant.

RESULTS
All observed *H. pylori* strains (n=170) were positive for the ureC gene. There were 142 (83.5 %) of the 170 *H. pylori* strains that were positive for cagA. The EPIYA patterns of the 142 cagA-positive *H. pylori* strains were evaluated in the

| Table 2. Distribution of the patterns of EPIYA motifs according to endoscopic diagnosis |
|---------------------------------|------------------|---------------|---------------|---------------|--------------|
| EPIYA motif pattern | PG (GC) | DU (DU) | Gastritis (G) | NGIS (NG) | Total (n=142) |
| ABC | 9 (23.7%) | 14 (63.7%) | 50 (69.5%) | 10 (100%) | 83 |
| AC | 1 (2.6%) | – | 4 (5.5%) | – | 5 |
| BC | 1 (2.6%) | – | – | – | 1 |
| ABCC | 15 (39.5%)| 5 (22.8%) | 4 (5.5%) | – | 24 |
| BCC | 2 (5.3%) | 1 (4.5%) | – | – | 3 |
| ACCC | 1 (2.6%) | 1 (4.5%) | – | – | 2 |
| ABCCCC | 4 (10.5%) | 1 (4.5%) | – | – | 5 |
| AB | 3 (7.9%) | – | 14 (19.5%) | – | 17 |
| A | 2 (5.3%) | – | – | – | 2 |
| D | – | – | – | – | – |
| Total | 38 (100%)| 22 (100%)| 72 (100%) | 10 (100%) | 142 |

38 (26.8 %) GC and 22 (15.5 %) DU cases of the PG and the 72 (50.7 %) gastritis and 10 (7 %) NGIS cases of the CG. Different EPIYA-A, -B, -C motifs were found in all 142 (100 %) cases; no EPIYA-D was found. In 28 (16.5 %) patients, no EPIYA motif was detected. Using the empty-site-positive PCR assay, we found that all 28 strains were truly cagA negative. EPIYA-C with multiple repeats was detected in 30 (88.2 %) and four (11.8 %) of the PG and CG cases, respectively. On the other hand, EPIYA-C with one repeat was detected in 25 (28 %) and 34 (23.9 %) of PG and CG cases, respectively. The most frequently detected EPIYA pattern was EPIYA-ABC in 83 cases. The distribution of the 83 EPIYA-ABC occurrences was 23 (27.7 %) and 60 (72.2 %) for the PG and CG respectively (Table 2). EPIYA-ABCC and EPIYA-ABCCC were detected in 15 (39.5 %) and 4 (10.5 %) cases with GC, respectively (Table 2).

In the distribution of EPIYA-C with one or multiple repeats for the the PG and CG cases, EPIYA-C with one repeat was detected in 25 (28 %) and 64 (72 %) of the PG and CG cases, respectively. The difference for EPIYA-C with one repeat was statistically significant ($P=0.039$) for the CG cases compared with the PG cases. On the other hand, EPIYA-C with multiple repeats was detected

| Table 3. Comparison of the PG and CG for EPIYA-C repeat patterns |
|---------------------------------|------------------|---------------|---------------|--------------|
| EPIYA-C repeat patterns | PG (GC and DU) | CG (Gastritis and NGIS) | OR 95 % CI | P value |
| One repeat of EPIYA-C (n=89) | 25 (28 %) | 64 (72 %) | 0.513 | 0.271–0.972 | 0.039 |
| Multiple repeats of EPIYA-C (n=34) | 30 (88.2 %) | 4 (11.8 %) | 26.500 | 8.653–81.157| <0.0001 |

http://jmm.microbiologyresearch.org
in 30 (88.2 %) and four (11.8 %) of the PG and CG cases, respectively. The difference for EPIYA-C with multiple repeats was statistically significant for the PG cases compared with the CG cases \(P<0.0001, \text{OR} \ 26.5, 95 \% \text{CI} \ 8.653–81.157 \) (Table 3).

In the PG, EPIYA-C with multiple repeats was compared for the GC and DU cases (Table 4). EPIYA-C with one repeat and multiple repeats were detected in 11 (28.9 %) and 22 (57.8 %) of the GC cases, respectively. In the DU cases of the PG, the numbers of EPIYA-C with one repeat and multiple repeats were 14 (63.6 %) and 8 (36.3 %), respectively. In the DU cases, a statistically significant difference was detected for EPIYA-C with one repeat compared with EPIYA-C with multiple repeats \(P=0.001, \text{OR} \ 8.902, 95 \% \text{CI} \ 2.323–34.116 \).

A multivariate analysis by logistic regression test of the PG composed of GC and DU cases was carried out with gender, age and one or multiple EPIYA-C repeats included as independent variables (Table 5). Having multiple EPIYA-C repeats was a risk factor for GC cases and increased the GC risk by 30.6-fold \(P=0.0001, \text{OR} \ 30.617, 95 \% \text{CI} \ 8.574–109.326 \). The DU risk was increased by 8.9-fold \(P=0.001, \text{OR} \ 8.902, 95 \% \text{CI} \ 2.323–34.116 \).

DISCUSSION

H. pylori infections play a role in the aetiology of gastrointestinal diseases including gastritis, peptic ulcer and GC (Suzuki & Moayyedi, 2013). However, the high prevalence of *H. pylori* infection does not explain the different incidences of GC; for example, the high *H. pylori* prevalence does not match the lower GC incidence in India (known as the Asian enigma) (Malaty, 2007). This may be explained by the difference in *H. pylori* virulence factors rather than *H. pylori* infection rate (Yamaoka, 2010).

There is strong evidence that CagA functions as a bacterial oncoprotein in mammals (Wroblewski et al., 2010), and CagA-positive *H. pylori* strains have been suggested to increase the risk of developing atrophic gastritis and GC by several researchers (Huang et al., 2003; Sahara et al., 2012; Ajami et al., 2013). As indicated by several studies, phosphorylated CagA–SHP-2 interactions contribute to cytoskeletal rearrangements and cell elongation by stimulating the ERK–MAP kinase signalling pathway. This is called the ‘hummingbird phenotype’ in epithelial cells (Higashi et al., 2002; Tsutsumi et al., 2003; Lima et al., 2011).

EPIYA-C and -D have a role in the interaction between CagA and SHP-2, which causes a characteristic pathology

<table>
<thead>
<tr>
<th>Endoscopic diagnosis</th>
<th>One repeat of EPIYA-C ([n \text{ (%)}])</th>
<th>Multiple repeats of EPIYA-C ([n \text{ (%)}])</th>
<th>OR</th>
<th>95 % CI</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td>11 (28.9)</td>
<td>22 (57.8)</td>
<td>32.000</td>
<td>9.236–110.875</td>
<td><0.0001</td>
</tr>
<tr>
<td>DU</td>
<td>14 (63.6)</td>
<td>8 (36.3)</td>
<td>9.143</td>
<td>2.413–34.648</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 5. Results of logistic regressions according to the variables in GC and DU cases of the PG

B, beta regression coefficient; Wald, test statistics used for the determination of the meaning of variables; d.f., degrees of freedom; \(\text{Exp}(B) \), exponential. Variables included in the logistic regression model were gender, age, EPIYA-C with one repeat and EPIYA-C with multiple repeats.

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SEM</th>
<th>Wald</th>
<th>df</th>
<th>(P) value</th>
<th>(\text{Exp}(B))</th>
<th>95 % CI for (\text{Exp}(B))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>0.188</td>
<td>0.576</td>
<td>0.106</td>
<td>1</td>
<td>0.744</td>
<td>1.207</td>
<td>0.390–3.730</td>
</tr>
<tr>
<td>Age</td>
<td>0.071</td>
<td>0.042</td>
<td>2.795</td>
<td>1</td>
<td>0.095</td>
<td>1.073</td>
<td>0.988–1.166</td>
</tr>
<tr>
<td>One repeat of EPIYA-C</td>
<td>-3.422</td>
<td>0.649</td>
<td>27.760</td>
<td>1</td>
<td>0.000</td>
<td>0.033</td>
<td>0.009–0.117</td>
</tr>
<tr>
<td>Multiple repeats of EPIYA-C</td>
<td>3.422</td>
<td>0.649</td>
<td>27.760</td>
<td>1</td>
<td>0.000</td>
<td>30.617</td>
<td>8.574–109.326</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.552</td>
<td>2.142</td>
<td>2.749</td>
<td>1</td>
<td>0.097</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>DU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>0.159</td>
<td>0.543</td>
<td>0.086</td>
<td>1</td>
<td>0.769</td>
<td>1.173</td>
<td>0.405–3.399</td>
</tr>
<tr>
<td>Age</td>
<td>0.051</td>
<td>0.035</td>
<td>2.065</td>
<td>1</td>
<td>0.151</td>
<td>1.052</td>
<td>0.982–1.128</td>
</tr>
<tr>
<td>One repeat of EPIYA-C</td>
<td>-2.186</td>
<td>0.685</td>
<td>10.174</td>
<td>1</td>
<td>0.001</td>
<td>0.112</td>
<td>0.029–0.430</td>
</tr>
<tr>
<td>Multiple repeats of EPIYA-C</td>
<td>2.186</td>
<td>0.685</td>
<td>10.174</td>
<td>1</td>
<td>0.001</td>
<td>8.902</td>
<td>2.323–34.116</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.939</td>
<td>1.805</td>
<td>2.649</td>
<td>1</td>
<td>0.104</td>
<td>0.053</td>
<td></td>
</tr>
</tbody>
</table>
in the gastric epithelium. It is suggested that oncogenic potential is increased with cytoskeletal disruption and that excessive activation of signal transduction pathways will increase IL-8 induction by increasing the CagA phosphorylation level (Hatakeyama, 2004; Cendron et al., 2009; Papadakos et al., 2013).

In various studies, different Cag A positivity rates were reported. For example, Yamaoka et al. (1999, 2002) stated that more than 90 % of H. pylori strains isolated from East Asian populations had the cagA gene but 40 % of Western strains did not have the cagA gene. Higher rates of CagA positivity have been reported: 52.1–94.3 % in Turkish studies from 2006 to 2013 (Erzin et al., 2006; Nagiyev et al., 2009; Kolyalı et al., 2012; Ozbey et al., 2013; Yula et al., 2013). Similarly, our Cag A positivity rate (83.5 %) for H. pylori strains was in accordance with previous Turkish studies. In other Turkish studies related to EPIYA-C repeats, Salih et al. (2010) indicated that the H. pylori-positive patients with gastritis had 87.5 % EPIYA-ABC and 12.5 % multiple EPIYA-C repeats, whereas DU patients had 46.4 % EPIYA-ABC and 53.6 % multiple EPIYA-C repeats. In another study, Salih et al. (2014) reported that gastritis patients had 76.9 % EPIYA-ABC and 23.1 % EPIYA-ABCC, DU patients had 30 % EPIYA-ABC, and 70 % had multiple EPIYA-C repeats. In a study by Gücin et al. (2013), EPIYA-ABC was detected in 93.3 % of gastritis patients, and EPIYA-ABCC was detected in 6.7 % of gastritis patients. The rate of EPIYA-ABC reported by Salih et al. (2010, 2014) and Gücin et al. (2013) in gastritis cases was higher than our 50 (69.5 %) EPIYA-ABC gastritis cases; this is different to the number of EPIYA-ABC gastritis cases in our CG sample cohort. The EPIYA-ABC rates reported for DU cases were lower than 14 (63.7 %) EPIYA-ABC DU cases in our PG. Thus, our EPIYA-ABC rates were different from those obtained in previous Turkish studies regarding patients with gastritis of the CG or cases with DU of the PG. We suggest that this could be due to a limited number of enrolled subjects in other studies. Unfortunately, we do not have any data about the increased GC risk due to EPIYA patterns in Turkey.

While some studies have shown an association between EPIYA-C repeat numbers and H. pylori-related diseases, other studies did not. Similar to our study, Yamaoka et al. (1998), Azuma et al. (2002) and Batista et al. (2011) showed that H. pylori strains with EPIYA-C repeats were significantly associated with GC and atrophic gastritis. Additionally, Yamaoka et al. (1999) reported that seven out of eight H. pylori Colombian strains (87.5 %) had more than three EPIYA-C repeats in GC patients. Similarly, Sicinschi et al. (2010) indicated that two EPIYA-C (34.3 %) and three EPIYA-C (1.5 %) repeats were found in patients with GC and suggested a significant association between the multiple EPIYA-C repeats and more severe lesions. Qadri et al. (2014) found that 70 % of CagA-positive GC cases had more than one EPIYA-C repeat. Ajami et al. (2013) found EPIYA-ABCC in 36.2 % of the patients with GC, and patients with EPIYA-C had a 2.27-fold increase in GC development versus patients with DU. Again, Kalaf et al. (2013) indicated that more than one EPIYA-C repeat occurred in 66.6 % of GC patients. Similar to our study, Kalaf et al. (2013) found a significant association between multiple EPIYA-C repeats and GC (P ≤ 0.01). Vaziri et al. (2013) studied EPIYA-ABCC and EPIYA-A/B/C and showed associations with GC and duodenitis, respectively. Silva et al. (2014) stated that the risk of GC was approximately fourfold higher among patients infected with strains carrying two or three EPIYA-C. The subtypes and distribution of EPIYA-C in our study were consistent with previous studies; the rate of EPIYA-C with multiple repeats in GC cases of our PG was significantly higher than the rate of EPIYA-C with one repeat (P = 0.039). We detected a higher significant difference between the PG and CG for the presence of multiple EPIYA repeats (P < 0.0001, OR 26.5, 95 % CI 8.653–81.157). Recently, Vaziri et al. (2015) studied the eukaryotic vector carrying the cagA gene (ABC and ABCCC types) and identified 42 key signal transduction genes involved in GC. They suggested that the ABCCC type could induce intestinal metaplasia. Their results may support our findings that multiple EPIYA-C repeats increased the GC risk by 30.6-fold by logistic regression analysis (P < 0.0001, OR 30.617, 95 % CI 8.574–109.326).

In contrast, Batista et al. (2011) and Torres et al. (2012) did not find any association between ulcers and the number of EPIYA-C repeats. Acosta et al. (2010) and Shokrzadeh et al. (2010) could not find differences between EPIYA patterns and clinical outcomes. The number of EPIYA-C with multiple repeats was observed less frequently in cases with gastritis (CG) and DU cases (PG). This may be because of the association of H. pylori strains with EPIYA-C with more than one repeat in the 3′ region of the cagA gene with enhanced histological injury and reduced survival in acidic conditions (Yamaoka et al., 1999); however, the number of strains with EPIYA-C with multiple repeats was higher in GC cases. This difference may be explained by the following hypothesis.

Yamaoka et al. (1999) reported that H. pylori strains with multiple EPIYA-C were less resistant to gastric acid and can survive only in the presence of advanced atrophic gastritis (such as in GC) in which gastric acid secretion is low. Yamaoka (2010) concluded that multiple EPIYA-C repeats may have developed after the onset of atrophy, and are not the cause, but rather the effect, of atrophy. This hypothesis may partly explain the contradictory results. A combination of bacterial, host and environmental factors may contribute to the development of GC.

The polymorphisms in the EPIYA motif pattern vary according to the geographical distribution (Jones et al., 2009; Acosta et al., 2010). While the Western type of EPIYA-C is common in Western communities, EPIYA-D is frequently isolated in East Asian communities (Higashi et al., 2002). Jones et al. (2009) identified EPIYA-ABD in 100 % of GC patients. This relationship between the Eastern type of the cagA genotype and GC may be linked to the Eastern CagA’s higher affinity for SHP-2 (Higashi et al., 2002). However, we did not detect any EPIYA-D.
In conclusion, we found that Western-type \textit{H. pylori} strains in Turkey have similar patterns of EPIYA motifs to those of neighbouring countries with Western populations. Crucially, our study revealed that having a multiple EPIYA-C repeat increased the GC risk by 30.6-fold and the DU risk by 8.9-fold compared with the CG (gastritis and NGIS).

ACKNOWLEDGEMENTS

This work was supported by the Istanbul University Research Fund under project number 45682. We are grateful for this support. We thank IONTEK A.S. and Burc Molecular Laboratory for the technical support and also thank Sami Saribas and Martyn K. White (Temple University) for their assistance with the English grammar. The manuscript was edited by American Manuscript Editors, an affiliate of Grammar Laboratories. This study was presented as a poster presentation in the ‘XXVIth International Workshop on \textit{Helicobacter} and related bacteria in chronic digestive inflammation and gastric cancer’ on 12–14 September 2013, Madrid, Spain (P03.19).

REFERENCES

