1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074286-0
2014-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/8/1113.html?itemId=/content/journal/jmm/10.1099/jmm.0.074286-0&mimeType=html&fmt=ahah

References

  1. Ameyama S., Onodera S., Takahata M., Minami S., Maki N., Endo K., Goto H., Suzuki H., Oishi Y. 2002; Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob Agents Chemother 46:3744–3749 [View Article][PubMed]
    [Google Scholar]
  2. Chisholm S. A., Dave J., Ison C. A. 2010; High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob Agents Chemother 54:3812–3816 [View Article][PubMed]
    [Google Scholar]
  3. Farrell D. J. 1999; Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. J Clin Microbiol 37:386–390[PubMed]
    [Google Scholar]
  4. Linz B., Schenker M., Zhu P., Achtman M. 2000; Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. Mol Microbiol 36:1049–1058 [View Article][PubMed]
    [Google Scholar]
  5. Ng L. K., Martin I., Liu G., Bryden L. 2002; Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46:3020–3025 [View Article][PubMed]
    [Google Scholar]
  6. Tabrizi S. N., Unemo M., Limnios A. E., Hogan T. R., Hjelmevoll S. O., Garland S. M., Tapsall J. 2011; Evaluation of six commercial nucleic acid amplification tests for detection of Neisseria gonorrhoeae and other Neisseria species. J Clin Microbiol 49:3610–3615 [View Article][PubMed]
    [Google Scholar]
  7. Trembizki E., Lahra M., Stevens K., Freeman K., Hogan T., Hogg G., Lawrence A., Limnios A., Pearson J. et al. 2014a; A national quality assurance survey of Neisseria gonorrhoeae testing. J Med Microbiol 63:45–49 [View Article][PubMed]
    [Google Scholar]
  8. Trembizki E., Smith H., Lahra M. M., Chen M., Donovan B., Fairley C. K., Guy R., Kaldor J., Regan D. et al. 2014b; High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform. J Antimicrob Chemother 69:1526–1532 [View Article][PubMed]
    [Google Scholar]
  9. Unemo M., Golparian D., Nicholas R., Ohnishi M., Gallay A., Sednaoui P. 2012; High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 56:1273–1280 [View Article][PubMed]
    [Google Scholar]
  10. Zarantonelli L., Borthagaray G., Lee E. H., Shafer W. M. 1999; Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 43:2468–2472[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074286-0
Loading
/content/journal/jmm/10.1099/jmm.0.074286-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error