In vitro and in vivo effects of beneficial vaginal lactobacilli on pathogens responsible for urogenital tract infections

Priscilla Romina De Gregorio, María Silvina Juárez Tomás, María Cecilia Leccese Terraf and María Elena Fátima Nader-Macías

Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000 San Miguel de Tucumán, Tucumán, Argentina

The aim of this work was to evaluate the effects of beneficial human vaginal lactobacilli (Lb) on urogenital pathogens through *in vitro* and *in vivo* experiments. Co-aggregative and antimicrobial properties between five vaginal Lb strains and urogenital pathogens or potential pathogens (*Streptococcus agalactiae*, *Staphylococcus aureus* and *Candida albicans* strains) were assayed. Also, associative cultures of Lb strains and *S. agalactiae* were performed and bacterial growth, pH, lactic acid and hydrogen peroxide (H$_2$O$_2$) were determined at different times. Based on the results obtained, the *in vivo* studies were assayed in mice with *Lactobacillus gasseri* CRL 1509 or *Lactobacillus salivarius* CRL 1328 inoculated intravaginally (i.v.) and then challenged i.v. with *S. agalactiae*. Results were analysed by ANOVA (repeated measures and general linear models). Most of the Lb strains increased the percentage of aggregation of *S. agalactiae* strains. Only one strain (*Lactobacillus reuteri* CRL 1324) positively affected the aggregation of *S. aureus* and none increased the aggregation of *C. albicans*. The inhibition of the growth of *S. agalactiae* strains by production of organic acids by lactobacilli was evidenced. The Lb–*S. agalactiae* co-cultures showed a significant inhibition of the pathogen after 4 h and 8 h of incubation. Parallel increases in lactic acid and H$_2$O$_2$ levels were observed. However, in the experimental murine model, no significant differences were obtained in the number of streptococci recovered from the vaginal tract of control mice and those inoculated with Lb. In conclusion, vaginal Lb exhibited *in vitro* co-aggregative and antimicrobial effects on *S. agalactiae* strains, suggesting that they could be promising candidates for protection against *S. agalactiae* challenge. However, as these effects were not evidenced in the murine model used, further animal studies under different experimental conditions should be conducted to evaluate the preventive effect of Lb against challenge with *S. agalactiae*.

INTRODUCTION

The vaginal microbiome of healthy women of reproductive age is constituted by communities with a low microbial diversity within each individual and between different subjects at the genus level (Ravel et al., 2011). Studies of the human microbiome have revealed that different *Lactobacillus* species are predominant but mutually exclusive in the vagina (Human Microbiome Project Consortium, 2012). Vaginal lactobacilli play a significant role in maintaining the balance of the dynamic ecosystem of the urogenital tract.

Lactobacilli can protect against urogenital tract infections (UGTI) by preventing pathogenic or potentially pathogenic micro-organisms adhering to the vaginal epithelial surface, forming biofilm, co-aggregating with pathogens, producing antimicrobial substances [organic acids, hydrogen peroxide (H$_2$O$_2$) and bacteriocins], competing for nutrients and stimulating the local immune response (Ocaña et al., 1999a; Juárez Tomás et al., 2003; Martín et al., 2008; Nader-Macías et al., 2010). Co-aggregation between lactobacilli and urogenital pathogens is a process that can prevent pathogen entry and colonization of the mucosal sites of the host (Boris et al., 1997, 1998; Schachtsiek et al., 2004; Schellenberg et al., 2006). Also, co-aggregation could result in prolonged exposure of pathogens to antagonistic compounds produced by lactobacilli, which could reduce pathogen viability (Saunders et al., 2007; Jones & Versalovic, 2009; McMillan et al., 2011).
An imbalance of the urogenital tract microbiota can produce a decrease in Lactobacillus population and a significant increase in pathogens or potential pathogens, leading to a higher susceptibility to UGTI (Ravel et al., 2011). The following agents are involved in UGTI: aerobic bacteria associated with aerobic vaginitis (e.g. Streptococcus agalactiae, Staphylococcus aureus, Escherichia coli and enterococci), anaerobic and facultative bacteria related to bacterial vaginosis (e.g. Gardnerella vaginalis, Atopobium vaginae, Prevotella bivia, Mobiluncus spp. and Mycoplasma spp., among others), yeasts associated with vulvovaginitis (e.g. Candida spp.), and several bacteria, viruses and protozoa responsible for sexually transmitted infections (Schwebke & Burgess, 2004; Fredricks et al., 2005; Larsson & Forsum, 2005; Zhou et al., 2009; Donders et al., 2009; Lauffer et al., 2010).

UGTI in women generate high morbidity and recurrence rates, probably due to failure of the conventional antimicrobial treatments to restore the Lactobacillus-dominated vaginal microbiome. For this reason, the intravaginal (i.v.) administration of pharmabiotic products containing beneficial lactobacilli could be a promising alternative strategy for the prevention or eradication of UGTI (Barrons & Burgess, 2004; Fredricks et al., 2005; Larsson & Forsum, 2005; Zhou et al., 2009; Donders et al., 2009; Lauffer et al., 2010).

Both in vitro studies and animal models are required to assess the beneficial characteristics of the different strains (Reid et al., 2003; Yao et al., 2007; Saksena et al., 2011; De Gregorio et al., 2012). In the present work, the in vitro co-aggregative and antimicrobial properties of five different vaginal Lactobacillus strains, previously selected for their beneficial properties, were evaluated on some pathogens responsible for UGTI. Furthermore, the preventive effect of vaginal Lactobacillus colonization against i.v. challenge with S. agalactiae was studied in a murine model.

METHODS

Micro-organisms and culture conditions. Five Lactobacillus strains, originally isolated from human vagina in Tucumán, Argentina (Ocaña et al., 1999a), were previously selected on the basis of their beneficial properties. Lactobacillus gasseri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1263, L. gasseri CRL 1509, Lactobacillus reuteri CRL 1324, and Lactobacillus rhamnosus CRL 1332 produce H₂O₂ (Juárez Tomás et al., 2011) while Lactobacillus salivarius CRL 1328 produces salicarin CRL 1328 (a bacteriocin) (Ocaña et al., 1999b; Vera Pingitore et al., 2009). Furthermore, L. reuteri CRL 1324 and L. rhamnosus CRL 1332 are biofilm-forming strains (Terraf et al., 2012).

Urogenital pathogens (Streptococcus agalactiae NH 16, NH 17, NH 18 and GB 96 strains, Staphylococcus aureus and Candida albicans F 1 and F 78 strains) were isolated from patients with UGTI at the Nuevo Hospital ‘El Milagro’ (Salta, Argentina) and at the Instituto de Microbiología ‘Luis Verna’ of the Universidad Nacional de Tucumán.

Micro-organisms were stored in milk–yeast extract (% (w/v): 13 non-fat milk, 0.5 yeast extract and 1 glucose) at −20 °C. Before experimental use, each Lactobacillus strain was grown in LAPtg (yeast extract/peptone/tryptone/Tween 80/glucose) broth (Raibaud et al., 1973) at 37 °C for 24 h and subcultured twice in the same medium at 37 °C for 12 h. The pathogens were cultured in LAPtg at 37 °C for 12 h and then all the strains, with the exception of C. albicans F 1, were subcultured at 37 °C in the same medium for 8 h, a time in which they reached the late exponential phase. C. albicans F 1 was subcultured for 12 h. All cultures were performed under static conditions.

Co-aggregation between lactobacilli and urogenital pathogens. Co-aggregation between lactobacilli and pathogens was studied as previously described (Ocaña & Nader-Macias, 2002). Briefly, cell suspensions of lactobacilli and pathogens in sterile PBS (g 1 L⁻¹: 8.0 NaCl; 0.34 KH₂PO₄; and 1.21 K₂HPO₄; pH 6.5) were adjusted to an optical density at 600 nm (OD) of 0.6 ± 0.02 (Spectronic 20; Bausch and Lomb) and combined (1:1). Co-aggregation was spectrophotometrically monitored every 30 min for 4 h. Controls of suspensions of each individual micro-organism were employed. Aggregation percentage was calculated as 1−(ODfinal/ODinitial) × 100, where ODinitial is the OD at time t = 0, and ODfinal is the OD at time t (in minutes) after the beginning of the assay.

In vitro antagonistic effects of lactobacilli and urogenital pathogens

Agar plate diffusion method. The antimicrobial effect of bacterial supernatants was evaluated with the agar plate diffusion technique (Juárez Tomás et al., 2004, 2011), using lactobacilli and pathogens as indicators and/or as producers of antimicrobial substances. Briefly, microbial supernatants were left untreated, neutralized with 2 N NaOH, or neutralized and treated with catalase (1000 U ml⁻¹). Then, untreated and treated supernatants were placed in 4 mm diameter holes in agar plates containing the different indicator micro-organisms (10⁻⁵ c.f.u. ml⁻¹). The subsequent steps of the diffusion technique were performed as previously described (Juárez Tomás et al., 2011).

Associated cultures of vaginal lactobacilli and S. agalactiae

NH 17. Co-cultures of lactobacilli (L. gasseri CRL 1263, L. reuteri CRL 1324, L. salivarius CRL 1328 or L. gasseri CRL 1509) and S. agalactiae NH 17 were performed in LAPtg broth at 37 °C under static conditions. Two inoculum concentrations of lactobacilli (around 10⁸ and 10⁹ c.f.u. ml⁻¹) and one of Streptococcus agalactiae (10⁸ c.f.u. ml⁻¹) were assayed. Pure cultures (employed as control cultures) were grown under the same culture conditions. At different times during the cultures, bacterial growth, pH (as an indirect measure of acid production) and levels of antimicrobial metabolites (H₂O₂ and organic acids) were assayed.

Bacterial growth was determined by the standard plate dilution method, using the selective culture medium De Man–Rogosa–Sharpe (MRS) agar (Merck) (De Man et al., 1960) at pH 5.5 for lactobacilli and Bacto Todd–Hewitt (TH) agar at pH 7.8 (Becton Dickinson) for streptococci. The plates were incubated at 37 °C for 48 h and the number of c.f.u. ml⁻¹ was determined.

The levels of organic acids in the supernatants of pure and associated cultures were quantified by HPLC as previously described (Juárez Tomás et al., 2011). H₂O₂ production during the growth was evaluated by a chromogenic method on plates of MRS agar medium supplemented with 1 mM tetramethylbenzidine (TMB) and 2 U ml⁻¹ horseradish peroxidase (MRS–TMB) (Juárez Tomás et al., 2004).
Briefly, micro-organisms were inoculated on the surface of MRS-TMB plates, which were then incubated under microaerophilic conditions at 37 °C for 48 h. Colonies of H2O2-producing strains turned blue after exposure to air for 30 min and the intensity of the blue colour allowed the classification of H2O2 production by the strains as (+ +) strong, (+ +) moderate, (+ + w) weak and (− −) negative.

In vivo effects of lactobacilli on S. agalactiae NH 17. An experimental murine model was employed to evaluate the preventive effect of the previous i.v. inoculation of L. salivarius CRL 1328 and L. gasseri CRL 1509 on the i.v. challenge with S. agalactiae NH 17.

Animals. Two-month-old female BALB/c mice, weighing 25–30 g, from the inbred colony of CERELA (Centro de Referencia para Lactobacilos) were used. Animals were housed in plastic cages and fed ad libitum with a conventional balanced diet, keeping their environmental conditions constant. To induce a pseudo-oestrous condition and promote bacterial colonization, all mice received a weekly subcutaneous injection of 0.02 mg β-oestradiol 17-valerate (Sigma) dissolved in 100 μl sesame oil (Sigma) (Furr et al., 1989; Cheng et al., 2005; Rahman et al., 2007) throughout the experiment. The experimental protocol was independently repeated three times using at least three animals for each experimental group at each sampling time. The Institutional Laboratory Animal Care and Use Committee of CERELA approved the experimental CRL-BIOT-LMP-2011/2A protocol used in this work.

Vaginal inoculation procedure. The animals were randomly assigned to five experimental groups: (a) lactobacilli (Lb)-pathogen (Pt)-treated mice (inoculated with L. salivarius CRL 1328 or L. gasseri CRL 1509 and later challenged with S. agalactiae NH 17), (b) Pt-treated mice (inoculated with saline and later challenged with S. agalactiae NH 17) and (c) Lb-treated mice (inoculated with L. salivarius CRL 1328 or L. gasseri CRL 1509 and later with saline) (Fig. 1).

Forty-eight hours after oestradiol administration, Lb–Pt-treated mice and Lb-treated mice were i.v. inoculated with 107–108 c.f.u. L. salivarius CRL 1328 or L. gasseri CRL 1509 twice a day (with 10 h in between) for 2 days, while Pt-treated mice were inoculated with saline [0.85 % (w/v) NaCl] on these days. The Lactobacillus inoculum was prepared from the cell pellet of the third subculture (performed in LAFTg broth for 12 h at 37 °C as described above), resuspended in 50 μl agarized peptone [% (w/v): 1 meat peptone, 1.5 agar; Britannia Laboratories], as previously described (De Gregorio et al., 2012).

Fourteen hours after the last Lactobacillus inoculation, Lb–Pt-treated mice and Pt-treated mice were i.v. challenged with a single dose of around 5 × 10^7 c.f.u. S. agalactiae NH 17 (in 20 μl saline), while Lb-treated mice were inoculated with 20 μl saline. Before challenge, S. agalactiae NH 17 was cultured overnight on sheep blood agar plates and then subcultured in TH broth for 9 h at 37 °C. The Streptococcus inoculum was prepared with bacterial pellets from the second subculture, which were washed and resuspended in saline. Fig. 1 shows the experimental groups, the sequence of vaginal inoculation and the sampling days of the experimental design. Lactobacilli inoculation and pathogen challenge are indicated by two different time lines.

Sampling and analytical procedures. Every sampling day, vaginal washings were obtained under sterile conditions, using automatic pipettes with tips loaded with 50 μl saline. Seven vaginal washes with saline were pooled from each mouse to be later used for the different determinations. Subsequently, mice were killed by cervical dislocation and dissected to aseptically remove the vaginal tissue.

For cytological studies, 20 μl aliquots of vaginal washes were spread onto glass slides and stained with the May–Grünwald–Giemsa technique. Then, the vaginal smears and the histological slides (described below) were evaluated by light microscopy (at × 400) to determine the oestrous state of mice (Silva de Ruiz et al., 2001) and the production of adverse effects.

Histological studies of vaginal tissue were performed according to standard methods with haematoxylin–eosin stain (Biopur) (Silva de Ruiz et al., 2003). Pictures were taken with an Axio Scope A1 Carl Zeiss microscope. The images were processed using Axio-Vision release 4.8 software.

Bacterial counts in vaginal washes were determined by the serial dilution method by plating in selective media: MRS (pH 5.5) supplemented with 1 μg ml⁻¹ tetracycline or 10 μg ml⁻¹ vancomycin (Sigma), to quantify L. gasseri CRL 1509 or L. salivarius CRL 1328, respectively (De Gregorio et al., 2012), and chromID Strepto B agar (bioMérieux) to quantify S. agalactiae NH 17 (Poisson et al., 2011). The plates were incubated under aerobic conditions at 37 °C for 48 h.

Statistical analysis. For the co-aggregation and associative cultures assays, ANOVA using a repeated measures model was applied to determine the main and interaction effects of factors (strain and time). Significant differences between the kinetics of co-aggregation or between the growth curves were determined by Fisher’s least significant difference (LSD) test, using the InfoStat vs 2012 software. A P-value <0.05 was considered as statistically significant. For in vivo studies, ANOVA using a general linear model was applied to determine the main and interaction effects of factors (experimental group and day post-inoculation). Significant differences (P-value <0.05) between mean values were determined by Tukey’s test, using MINITAB statistical software (version 15 for Windows).

RESULTS

Co-aggregation between lactobacilli and pathogens

The degree of aggregation of all the pathogens was significantly affected by the Lactobacillus strain (P<0.01) and by the length of the aggregation assay (P<0.0001) (Fig. 2). Lactobacillus–pathogen co-aggregation was considered significant when the co-aggregation percentage was significantly higher (P<0.05) than the self-aggregation percentage of each pathogen strain.

Out of the five vaginal Lactobacillus strains studied, only L. gasseri CRL 1509, L. gasseri CRL 1263 and L. reuteri 1324 were able to co-aggregate significantly (P<0.05) with at least two of the four S. agalactiae strains evaluated (Fig. 2A). Maximal co-aggregation percentage between L. salivarius CRL 1328 and S. agalactiae was slightly higher than S. agalactiae self-aggregation percentages (Fig. 2A).

The aggregation percentage of S. aureus was significantly higher (P<0.05) only in the presence of L. reuteri CRL 1324 (Fig. 2B). On the other hand, the self-aggregation percentages of the two C. albicans strains studied were significantly higher (P<0.05) than the percentages of co-aggregation between the yeasts and all Lactobacillus strains evaluated, except for C. albicans F 78 in the presence of L. gasseri CRL 1509 (Fig. 2C).
All the pathogenic strains tested, with the exception of S. agalactiae NH 16 and NH 18, showed lower aggregation percentages in the presence of L. rhamnosus CRL 1332 than their self-aggregation percentages (Fig. 2A–C). In general, vaginal Lactobacillus strains evidenced higher self-aggregation abilities than pathogenic micro-organisms (Fig. 2D), except in the case of Candida strains, which were the micro-organisms with highest self-aggregation values.

In vitro antagonistic effects of lactobacilli and urogenital pathogens

In the agar plate diffusion method, only L. gasseri CRL 1509 inhibited the growth of S. agalactiae NH 17 and GB 96, while L. reuteri CRL 1324 inhibited S. agalactiae GB 96 (data not shown). L. gasseri CRL 1509 produced the highest well-defined inhibition halo (8 mm diameter) on the growth of S. agalactiae NH 17. The inhibitory activity of the two Lactobacillus strains disappeared after the neutralization of the supernatants, which indicates that organic acids are responsible for the antagonistic effect. Moreover, when the inhibitory effect of the pathogens was assayed on Lactobacillus strains, L. reuteri CRL 1324 was the only strain inhibited by a pathogenic micro-organism (S. agalactiae NH 16).

Associated cultures of lactobacilli and S. agalactiae NH 17

On the basis of the results obtained in the studies described above, co-cultures of L. gasseri CRL 1263, L. reuteri CRL 1324, L. salivarius CRL 1328 or L. gasseri CRL 1509 and S. agalactiae NH 17 were carried out to further evaluate the degree of interaction.

The lactobacilli and S. agalactiae NH 17 co-cultures showed a significant inhibition (P<0.05) of pathogen growth at 4 h and 8 h of incubation with the high and low Lactobacillus inocula, respectively. The lowest numbers of pathogen cells (reduction of 4–5 log units) were observed after 12 h of co-culture with L. gasseri CRL 1263, L. salivarius CRL 1328 and L. gasseri CRL 1509 at both inoculum concentrations. L. reuteri CRL 1324 inhibited S. agalactiae NH 17 (4 log units) after 24 h only with the high inoculum. L. gasseri CRL 1509 and L. salivarius CRL 1328 were the strains that showed the strongest inhibitory effect against S. agalactiae NH 17. On the other hand, the number of viable lactobacilli in mixed and pure cultures was similar (Fig. 3).

A marked decrease in pH in both pure and mixed cultures of lactobacilli and S. agalactiae was observed up to 8 h of incubation, followed by a slight decrease up to 48 h. Parallel increases in lactic acid levels were observed. L. gasseri CRL 1509 and L. gasseri CRL 1263 [both homofermentative lactic acid bacteria (LAB)] showed the highest lactic acid concentrations after 12 h (10.55±0.18 g l⁻¹) and 24 h (8.83±0.41 g l⁻¹) of incubation, respectively. On the other hand, L. reuteri CRL 1324 (a heterofermentative LAB) and L. salivarius CRL 1328 (a homofermentative LAB) produced lower amounts of lactic acid, reaching maximum values after 12 h (4.05±0.28 g l⁻¹) and 48 h (5.50±0.16 g l⁻¹) of incubation, respectively (Fig. 4).
However, *L. reuteri* CRL 1324 produced other antimicrobial metabolites, such as ethanol (2.46 ± 0.13 g l⁻¹ at 12 h) and acetic acid (0.30 ± 0.034 g l⁻¹ at 48 h). *S. agalactiae* NH 17, which belongs to the LAB group, produced lower lactic acid levels than all the *Lactobacillus* strains evaluated (3.19 ± 0.041 g l⁻¹ at 12 h). *L. gasseri* CRL 1509 reached the lowest pH values at 8 h of incubation and produced the highest lactic acid concentrations, which were consistent with the marked inhibitory effect on *S. agalactiae* (Figs 3 and 4).

L. reuteri CRL 1324 and *L. gasseri* CRL 1263 evidenced strong production of H₂O₂ in both pure and associated cultures. Weak to moderate H₂O₂ production was observed in cultures of *L. gasseri* CRL 1509 and *S. agalactiae* NH 17. In contrast, *L. salivarius* CRL 1328 did not produce H₂O₂ (Table S1, available in the online Supplementary Material). *L. reuteri* CRL 1324, the strain that showed the highest H₂O₂ production, inhibited *S. agalactiae* at lower levels, suggesting that lactic acid could be the main antagonistic metabolite responsible for the inhibition of the pathogen (Fig. 4, Table S1).

In vivo effects of lactobacilli on *S. agalactiae* NH 17

L. salivarius CRL 1328 and *L. gasseri* CRL 1509 were selected to evaluate their effect on the vaginal tract against the challenge with *S. agalactiae* in an experimental murine model. The two *Lactobacillus* strains were selected on the basis of the results obtained in the *in vitro* studies.

Seventy-five per cent of Lb–Pt-treated mice and Pt-treated mice were colonized with *S. agalactiae* NH 17. *S. agalactiae* NH 17 was recovered up to the seventh day post-pathogen challenge from vaginal samples of Lb–Pt-treated mice and Pt-treated mice. There were no significant differences (*P* > 0.05) in the number of viable streptococci between...
L. gasseri CRL 1263 (low inoculum)–S. agalactiae NH 17

L. gasseri CRL 1263 (high inoculum)–S. agalactiae NH 17

L. reuteri CRL 1324 (low inoculum)–S. agalactiae NH 17

L. reuteri CRL 1324 (high inoculum)–S. agalactiae NH 17

L. salivarius CRL 1328 (low inoculum)–S. agalactiae NH 17

L. salivarius CRL 1328 (high inoculum)–S. agalactiae NH 17

L. gasseri CRL 1509 (low inoculum)–S. agalactiae NH 17

L. gasseri CRL 1509 (high inoculum)–S. agalactiae NH 17
both experimental groups throughout the various sampling days (Fig. 5A, B).

In the vaginal washings of all the Lb–Pt-treated mice and Lb-treated mice, high numbers of viable L. salivarius CRL 1328 (4.73 ± 0.24 log c.f.u. ml⁻¹) or L. gasseri CRL 1509 (4.98 ± 0.28 log c.f.u. ml⁻¹) were recovered at 3 days post-inoculation of lactobacilli. In both experimental groups, a significant decrease (P<0.001) in the number of viable lactobacilli was observed throughout the sampling period. Only L. gasseri CRL 1509 persisted in the vaginal tract up to the ninth day after Lactobacillus inoculation. No significant differences (P>0.05) were observed in the numbers of vaginal lactobacilli between Lb–Pt-treated mice and Lb-treated mice on different sampling days (Fig. 5C, D).
The vaginal cytology and histology of mice confirmed their oestrous state, which was characterized by the presence of predominantly large, cornified cells. Also, a leukocyte influx was evidenced in Lb–Pt-treated mice and Pt-treated mice at day 1 post-pathogen challenge, but not on subsequent days. No such influx was observed in Lb-treated mice on any of the different sampling days (Figs S1 and S2).

DISCUSSION

Lactobacillus strains can be selected as potential active ingredients for pharma-biotic products by means of *in vitro* and *in vivo* experimental animal assays in order to evaluate the beneficial characteristics believed to be involved in the protective mechanisms of the urogenital tract.

Some of the *in vitro* techniques relate to the interaction between beneficial strains and pathogens, including co-aggregation and production of antagonistic metabolites. Co-aggregation is a process in which genetically different micro-organisms become attached to one another via specific molecules (Younes *et al.*, 2012). In this work, the co-aggregation ability of lactobacilli with urogenital pathogens was evaluated. Out of the five *Lactobacillus* strains evaluated, *L. gasseri* CRL 1509 and *L. reuteri* CRL 1324 were able to co-aggregate with at least two *S. agalactiae* strains. In contrast, Boris *et al.* (1998) showed that vaginal *Lactobacillus acidophilus*, *L. gasseri* and *Lactobacillus jenseni* were not able to co-aggregate with *S. agalactiae*.

Only *L. reuteri* CRL 1324 was capable of co-aggregating with *S. aureus*. In a similar way, experiments performed...
with atomic force microscopy evidenced stronger adhesion forces between vaginal lactobacilli (mainly probiotic L. reuteri RC-14) and three virulent toxic shock syndrome toxin 1-producing S. aureus strains than between staphylococcal pairs, which result in larger lactobacilli–S. aureus co-aggregates (Younes et al., 2012). None of the strains evaluated in this work co-aggregated with C. albicans strains. In contrast, Boris et al. (1998) showed that vaginal L. acidophilus, L. gasseri and L. jensenii were able to co-aggregate with C. albicans. Chassot et al. (2010) demonstrated that C. albicans–L. acidophilus co-aggregation caused a significant increase in the in vitro adhesion of the yeast and a decrease in the Lactobacillus adhesion to a contraceptive vaginal ring, suggesting that L. acidophilus-based probiotics could not exert a protective effect against C. albicans.

The results obtained in this work indicate that this phenomenon is strain specific and dependent on the time of the aggregation assay, as reported by other scientists (Collado et al. 2007; Ekmekci et al., 2009). It is important to highlight that some UGTIs, such as bacterial vaginosis, occur when co-aggregates are dominated by pathogens (MacPhee et al., 2010). Moreover, when lactobacilli form co-aggregates with pathogens, homeostasis could be restored (Reid et al., 1990). Younes et al. (2012) hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate co-aggregation and in vivo elimination of pathogens, partially explaining the efficacy of probiotic lactobacilli used to prevent UTI.

With respect to antagonistic mechanisms, several in vitro studies have shown that vaginal Lactobacillus strains can inhibit the growth of a wide spectrum of urogenital pathogens, such as S. agalactiae, S. aureus, Neisseria gonorrhoeae, E. coli and Klebsiella pneumoniae, among others, through the production of different antimicrobial substances (organic acids, H2O2 and bacteriocins) (Muench et al., 2009; Bodaszewska et al., 2010; Juárez Tomás et al., 2011; Ruiz et al., 2012). The results obtained in this work indicate that, out of the different urogenital pathogens assayed using the agar plate diffusion assay, only the S. agalactiae strains were inhibited by two vaginal Lactobacillus strains (L. gasseri CRL 1509 and L. reuteri CRL 1324) through the production of organic acids. Similarly, applying agar plate techniques, Ruiz et al. (2012) demonstrated that indigenous vaginal lactobacilli negatively affected the in vitro growth of S. agalactiae and that inhibition was caused by bacteriocin-like inhibitory substances produced by the lactobacilli.

When employing a more sensitive method (lactobacilli–pathogen associative cultures) than the diffusion test to study the antagonistic effects of lactobacilli on Streptococcus agalactiae NH 17, two different inoculum concentrations of lactobacilli were assayed according to the number of lactobacilli isolated in the genital tract of healthy fertile women (6.59 ± 2.02 log c.f.u. per vaginal sample; Rönnqvist et al., 2006). The inoculum concentrations were also supported by the concept that high doses of probiotic lactobacilli (10^6–10^9 viable cells per day), either taken orally or applied vaginally, are required to restore the ecological balance of the urogenital tract and to produce the physiological effect on the host (ISAPP, 2013; Mastromarino et al., 2013). The S. agalactiae concentration used was selected to evaluate the inhibitory ability of lactobacilli against the highest number of the pathogen (5.0 log c.f.u. per vaginal sample) reported in women with positive samples (Rönnqvist et al., 2006).

In lactobacilli–pathogen associative cultures, the four lactobacilli assayed significantly antagonized pathogen growth. Similar results were published by Bodaszewska et al. (2010), demonstrating a strong inhibitory activity of Lactobacillus species against S. agalactiae strains after 2 h of incubation in mixed cultures. This inhibition was dependent on the Lactobacillus strains tested, but independent of S. agalactiae serotypes evaluated. In humans, organic acids and H2O2 produced by vaginal lactobacilli are considered the main factors that contribute to a hostile environment for pathogens (Reid & Burton, 2002; Martin et al., 2008). Therefore, the levels of these metabolites that could participate in S. agalactiae NH 17 inhibition during associative cultures were determined. L. gasseri CRL 1509 (the strain that produced the highest lactic acid levels) showed the highest antagonistic effect on S. agalactiae, while L. reuteri CRL 1324 (the highest H2O2 producer) exerted the lowest antagonistic effect, suggesting that this S. agalactiae strain could be sensitive to organic acids and resistant to H2O2. Liu et al. (2004) demonstrated that S. agalactiae is capable of producing a carotenoid pigment with antioxidant properties that affords protection against reactive oxygen species (e.g. H2O2), important components of the oxidative burst killing mechanisms of host phagocytic cells, which could explain the results obtained in this work.

The in vitro studies indicate that L. gasseri CRL 1509 and CRL 1263, L. salivarius CRL 1328 and L. reuteri CRL 1324 produce antimicrobial substances active against S. agalactiae. Moreover, the significant co-aggregation between Lactobacillus (mainly CRL 1509, CRL 1263 and CRL 1324) and S. agalactiae strains could facilitate the inhibitory effect and the elimination of the co-aggregation partner from the vaginal tract. These results could be clinically relevant since S. agalactiae is an opportunistic pathogen that can cause vaginitis, painful fine superficial fissures and minimal erythema of vulvar skin in adolescent and young adult populations as well as serious invasive infections in susceptible adult populations. In pregnant women, the presence of S. agalactiae is associated with the risk of neonatal infections (bacteraemia, sepsis, pneumonia and/or meningitis) and death (Clark & Atendido, 2005; Maisey et al., 2008; Rajagopal, 2009; Mirowski et al., 2012; Savini et al., 2013).

Therefore, pharmabiotic products containing beneficial Lactobacillus strains could be a promising alternative for protection against S. agalactiae in women, thus preventing
S. agalactiae infections in newborns. However, further testing on animals is required previous to clinical studies and inclusion of the strains in the design of such products.

Unlike the in vitro inhibition of the pathogens, where L. gasseri CRL 1509 and L. salivarius CRL 1328 showed co-aggregative and antimicrobial properties on S. agalactiae NH 17, these strains were not able to inhibit vaginal colonization of the pathogen in the experimental murine model employed. Several conditions could favour the in vitro inhibitory effect of Lactobacillus on the pathogen, but they would be different from the ones in the murine vaginal ecosystem of the model used in our work.

In a similar way, Muench et al. (2009) reported that Lactobacillus crispatus, a human vaginal H$_2$O$_2$-producing Lactobacillus strain, inhibited N. gonorrhoeae in vitro but showed no evidence of a difference either in the duration of vaginal infection or in the number of gonococci recovered from the vaginal tract of oestrogenized Lactobacillus-treated or untreated mice. Moreover, the i.v. inoculation of mice with 107 c.f.u. of human Lactobacillus strains (vaginal L. jenseni ATCC 25258 or urine L. crispatus ATCC 33197) did not produce a decrease in vaginal pH compared with the vaginal pH (around 6.0–6.8) of buffer-inoculated control mice (Muench et al., 2009). Based on the fact that murine vaginal pH is higher than normal human vaginal pH (around 4.0–4.5) (Larsen, 1993) and taking into account that acidity favours the stability of inhibitory substances, Muench et al. (2009) hypothesized that lactobacilli could be less toxic in the less acidic environment of the murine vagina.

Even though several research works have demonstrated the in vitro effects of vaginal lactobacilli on S. agalactiae (Bodaszewska et al., 2010; Juárez Tomás et al.; 2011; Ruiz et al., 2012), the in vivo effect of lactobacilli on this genital pathogen has not been assessed up to now. Cheng et al. (2005) and Cavaco et al. (2013) used murine models of S. agalactiae vaginal colonization to evaluate the effect of a bacteriophage lytic enzyme and an immunobiotic peptide. Both studies evidenced a reduction in S. agalactiae vaginal colonization. However, this is to our knowledge the first work evaluating the in vivo effect of vaginal lactobacilli on S. agalactiae colonization, although no positive result could be achieved.

In conclusion, different results were obtained through in vitro and in vivo assays: human vaginal lactobacilli exhibited in vitro antimicrobial effects on S. agalactiae, but these effects were not evidenced in the murine model used. Thus, further animal studies under different experimental conditions should be carried out. Inoculation of mice with higher doses of lactobacilli could be assayed in order to determine if higher inocula or viable cell numbers could favour the colonization/permanence of lactobacilli and the production of antimicrobial substances (e.g. organic acids acidifying the murine vaginal milieu) that can afford protection against pathogens. Also, some experiments could be designed with previous modification of the pH of the vaginal media, or suspending the microorganisms in a low pH medium, to determine if these conditions would favour persistence of lactobacilli and their protective effect.

ACKNOWLEDGEMENTS

This paper was supported by CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) (PIP 632 and PIP 2011 744) and ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica) (PICT 2007-543 and PICT 2012-1187). Lactobacillus salivarius CRL 1328 was licensed to Probiotical-Anidral for industrial production. We thank Elena Bru for her help with the statistical analysis of experimental results and Dr Virginia Ocaña for some of the human urogenital pathogens isolated at the Nuevo Hospital ‘El Milagro’ (Salta, Argentina).

REFERENCES

