Evidence for the predominance of a single tet(M) gene sequence type in tetracycline-resistant Ureaplasma parvum and Mycoplasma hominis isolates from Tunisian patients

Boutheina Ben Abdelmoumen Mardassi, Nadhem Aissani, Imed Moalla, Douaa Dhahri, Abir Dridi and Béhija Mlik

Resistance to tetracyclines in genital mycoplasmas is due mainly to acquisition of the tet(M) determinant, which is frequently associated with conjugative transposon elements of the Tn916/Tn1545 family. The aim of the present work was to evaluate the prevalence of tet(M) in Tunisian isolates and to gain an insight into its origin and evolution. Twenty Ureaplasma parvum, two Ureaplasma urealyticum and 48 Mycoplasma hominis isolates, recovered from Tunisian patients with urogenital and infertility disorders, were evaluated for their resistance to tetracyclines and interrogated by PCR amplification for the presence of tet(M) and int-Tn, the gene encoding the integrase of Tn916/Tn1545-like transposons. The resistance rates to tetracyclines were 22.72 and 25.0% among U. parvum and M. hominis isolates, respectively, with high-level resistance observed in 11 of the 12 resistant M. hominis isolates. All resistant isolates harboured both tet(M) and int-Tn sequences. Nucleotide sequence analysis of the tet(M) amplicon revealed a unique sequence shared by all tetracycline-resistant clinical isolates of both species. Molecular typing indicated that the tetracycline-resistant U. parvum and M. hominis isolates were not clonal. Taken together, these data indicate that a single tet(M) gene sequence type, most probably transmitted via a Tn916/Tn1545-like transposon, contributes to most of the tetracycline resistance in U. parvum and M. hominis isolates in Tunisia. Because this tet(M) gene sequence type was harboured by different Mycoplasma spp. and by phylogenetically distinct isolates within these species, one could reasonably argue that it may have benefited from an efficient horizontal transfer context, making it highly competent to spread.

INTRODUCTION

Mycoplasmas are among the smallest self-replicating microorganisms capable of independent growth. They are widespread in nature, and several species have been isolated from humans. Genital mycoplasmas represent a complex group of micro-organisms that have been associated with a wide array of infectious diseases in adults and children. Mycoplasma hominis, Ureaplasma urealyticum and/or Ureaplasma parvum are suspected of being causative agents of non-gonococcal urethritis (Horner et al., 2001; Taylor-Robinson et al., 1985), pregnancy complications and prenatal infections (Abele-Horn et al., 2000; Gerber et al., 2003; Judlin, 2003; Yoon et al., 2003). Recent evidence using a primate model has confirmed their implication as aetiological agents in genital pathologies (Novy et al., 2009). The pathogenic potential of Mycoplasma genitalium has been recognized recently (McGowin & Anderson-Smits, 2011; Taylor-Robinson & Jensen, 2011).

As occurs in a wide range of bacteria, acquisition of high-level resistance to tetracyclines in genital mycoplasmas is due mainly to the presence of the tet(M) determinant (de Barbeyrac et al., 1996; Dégrange et al., 2008; Roberts, 1990). The product of the tet(M) gene renders ribosomes resistant to tetracyclines, a mechanism of action referred to as ribosome protection (Burdett, 1991; Chopra & Roberts, 2001).

The tet(M) gene is usually located on the chromosome and has been associated with a number of conjugative transposons, including Tn1545, Tn916 and Tn919, although it may also be plasmid-encoded (Bentorcha et al., 1992; Burdett, 1990; de Barbeyrac et al., 1996; Gascoyne-Binzi et al., 1993). Excessive recombination of these transposons requires two
transposon-encoded proteins, Xis-Tn and Int-Tn. The latter protein alone is sufficient for integration (Poyart-Salmeron et al., 1990). Comparative sequence analyses of tet(M) genes from different bacterial species, including genital mycoplasmas, have revealed its mosaic structure (Gascoyne-Binzi et al., 1993; Huang et al., 1997; Oggioni et al., 1996; Soroka et al., 2002). Here, we have provided evidence that a single tet(M) sequence type predominates in tetracycline-resistant genital mycoplasmas isolated from Tunisian patients, suggesting its increased ability to spread.

METHODS

Mycoplasma strain collection. Three reference mycoplasma strains and two ureaplasma strains purchased from the American Type Culture Collection (ATCC) were used: M. hominis PG21 (ATCC 23114), Mycoplasma fermentans (ATCC 19989), M. genitalium (ATCC 33530), U. parvum serotype 3 (ATCC 27815) and U. urealyticum serotype 8 (ATCC 27618). An additional set of 27 M. hominis (MH1–MH27) isolates that have been characterized previously (Mardassi et al., 2007) were included in this study.

Clinical specimens and data collection. The study included patients from three geographically distinct regions in Tunisia (Tunis, Bizerte and Sousse) whose clinical specimens were processed in the Laboratory of Mycoplasmas of the Institut Pasteur de Tunis between 2005 and 2009. Each patient represented a unique case, and mycoplasma isolation was not attempted on consecutive specimens. The clinical specimens included: (i) cervical swabs from female patients suffering from sexually transmissible diseases; (ii) vaginal samples from women presenting a number of complications associated with pregnancy, including chorioamnionitis and pre-term birth; (iii) urethral specimens obtained from men with urethritis; and (iv) semen samples from clinical cases associated with infertility. All specimens were tested for the presence of genital mycoplasmas (M. hominis, M. genitalium, M. fermentans and Ureaplasma spp.) by broth and solid culture. Information was obtained prospectively on gender, age and associated clinical data of the patients. This study was conducted in close conformity with ethical aspects, which were established by the ethical committee of the Tunisian Ministry of Health. Samples were collected in the context of the routine diagnostic activity of the Laboratory of Mycoplasma with the consent of patients. All patient files were kept confidential.

Specimen processing and mycoplasma isolation. The collected specimens were inoculated onto 1.8 ml SP4 broth medium and then transferred to the laboratory at 4 °C within 24 h. Semen samples were also placed in a tube with 1.8 ml SP4 medium for cultivation. The specimens were processed immediately upon arrival or after storage at −80 °C. After filtration through a 0.45 μm pore-size single-use syringe filter, 200 μl of the specimen was inoculated into SP4 medium (Tully et al., 1977) supplemented with 5% CMRL 1066 (Sigma), 2000 U penicillin G ml−1, 500 U polymyxin B ml−1, 2.5 μg amphotericin B ml−1, 10% fresh yeast extract (Amersham Biosciences), 15% horse serum (Gibco-BRL) and 0.5% phenol red. The medium was further supplemented with 0.5% glucose, 0.5% arginine or 0.5% urea (SP4-U), depending on the nutritional needs of the species being cultivated. All broth cultures were incubated at 37 °C and examined daily for turbidity and pH changes. Growth confirmation was performed on SP4 agar plates maintained at 37 °C with 5% CO2, and the plates were regularly observed microscopically for the appearance of mycoplasma colonies. Growth of ureaplasmas was observed as a change in colour of the SP4-U medium (hydrolysis of urea with the release of ammonia, signalled by a colour change of a pH indicator). The presence of characteristic brownish colonies on SP4 agar plates further confirmed the isolation of ureaplasmas. Given its ability to hydrolyse arginine, growth of M. hominis was accompanied by alkalization of the SP4 liquid medium in the presence of arginine, typically recognized as a change in colour of the phenol red indicator. No acidification of the SP4 liquid medium was observed, indicating the absence of mycoplasma species that ferment glucose such as M. genitalium, M. fermentans and Ureaplasma urealyticum. Identification of the isolated mycoplasma and ureaplasma species was further confirmed by PCR amplification (see below).

For mycoplasma titration, dilutions and subcultures were performed as described elsewhere (Taylor-Robinson & Furr, 1981).

Mycoplasma detection by PCR. M. hominis and ureaplasmas were also detected by PCR, targeting DNA fragments of the P120 and multiple-handed antigen (MBA) genes, respectively. The primer pairs Mhp120′F/Mhp120′R (Mardassi et al., 2007) and UMS-125/UMA226 (Knox et al., 1998) were used to amplify the P120 and MBA fragments, respectively. The characteristics of these primers are given in Table 1. Based on the amplicon size of the PCR targeting the MBA gene, ureaplasmas were assigned to U. parvum (403 or 404 bp) or U. urealyticum (448 bp).

Tetracycline susceptibility testing. Tetracycline susceptibility was determined using a quantitative broth microdilution technique, as described by Beeton et al. (2009), with some modifications. Serial twofold dilutions of tetracycline hydrochloride (Sigma) in 100 μl SP4 or SP4-U broth medium, from 51.5 to 0.025 μg ml−1, were prepared from a stock solution of 1030 μg ml−1 and dispensed into a test 96-well polystyrene plate. The inoculum suspension (100 μl) of M. hominis or Ureaplasma spp. isolates at 105 c.f.u. ml−1 was then inoculated into the wells containing the antibiotic. Plates were covered with plastic wrap and incubated at 37 °C for 24–48 h. Culture controls containing SP4 or SP4-U broth plus organisms without antibiotic were included in all tests. As a negative control for each isolate, a row of the 96-well plate was filled with uninoculated medium (SP4 or SP4-U). The lowest concentration of antibiotic that completely inhibited visual growth of mycoplasma (no pH change) was recorded as the MIC. Control of inoculum density was achieved by viable counts in SP4 or SP4-U broth.

Detection of tet(M) and int-Tn genes. M. hominis or ureaplasma culture volumes (5–8 ml) were used to prepare DNA for PCR amplification. The cultures were centrifuged at 42 654 g for 30 min, washed in PBS (pH 7.4) and resuspended in 200 μl PBS. This preparation was treated with SDS (1% final concentration) and RNase A (5 μg ml−1) for 30 min at 37 °C. Next, 5–15 μl (corresponding to 105 bacterial cells) was boiled for 5 min and used for PCR amplification.

Detection of tet(M) and int-Tn sequences was performed using the primer pairs tet1/tet2 and int1/int2, respectively (Table 1). The cycling parameters consisted of 30 cycles of 1 min denaturation at 95 °C, 1 min annealing at 55 or 50 °C [for the tet(M) and int-Tn primers, respectively] and 1 min extension at 72 °C, followed by a final extension step at 72 °C for 10 min. The PCR amplicons were visualized by agarose gel electrophoresis, as described by Sambrook et al. (1989).

Nucleotide sequencing of the tet(M) amplicon. The PCR products were separated by electrophoresis in a 1.5% low-melting-point agarose gel, excised from the gel and purified using a GFX PCR DNA and Gel Band Purification system (Amersham Biosciences). Determination of the nucleotide sequence was performed using a Prism Ready Reaction Dye Deoxy Terminator Cycle Sequencing kit on an ABI PRISM 377 DNA sequencer (Applied Biosystems). Each sample was sequenced from two independent PCR amplifications.
The sequence data were aligned using CLUSTAL W (Thompson et al., 1994) and edited with the software program BioEdit (Hall, 1999).

Phylogeny of Ureaplasma spp. and M. hominis clinical isolates. The phylogenies of Ureaplasma spp. and M. hominis clinical isolates were reconstructed based on sequence polymorphisms within fragments of their MBA and P1209 genes, respectively, as described previously (Knox et al., 1998; Mardassi et al., 2007). The PCR amplicons were subjected to nucleotide sequencing, and phylogenetic reconstructions were performed in MEGA5 (Tamura et al., 2011). A dendrogram was obtained using the neighbour-joining method with 1000 bootstrapping replicates.

RESULTS

Mycoplasma identification and tetracycline resistance

Based on the MBA amplicon size, 90.90 % (20/22) of ureaplasma isolates were assigned to the species *U. parvum* and the remaining two isolates (9.1 %) to *U. urealyticum* (Table 2). Tetracycline resistance was observed in five of the 20 *U. parvum*, yielding a resistance rate of 22.72 % among all ureaplasmas. All *U. parvum* clinical isolates were of intermediate resistance (MIC of 12.87 mg l⁻¹; Table 2). Twelve of the 48 *M. hominis* isolates (25.0%) were resistant to tetracycline (Table 2). In contrast to *U. parvum*, high-level resistance was observed in the majority (11/12; 91.67 %) of *M. hominis* isolates, of which 36.36 % (4/11) showed MIC values of 51.5 mg l⁻¹.

Detection of tet(M)/int-Tn in U. parvum and M. hominis clinical isolates

The molecular survey aiming at detecting *tet(M)* and int-Tn sequences revealed that all tetracycline-resistant *U. parvum* and *M. hominis* clinical isolates simultaneously harboured the two sequences (Table 2). The PCR products of *tet(M)* and int-Tn all migrated at the expected sizes of 377 and 579 bp, respectively (data not shown). Neither *tet(M)* nor int-Tn sequences could be amplified from clinical isolates that were susceptible to tetracycline.

Evidence for the predominant spread of a single *tet(M)* sequence type among U. parvum and M. hominis clinical isolates in Tunisia

To gain insight into the nature and evolution of *tet(M)*, we determined its nucleotide sequence from all *U. parvum* and *M. hominis* *tet(M)*-positive isolates. As shown in Fig. 1, a unique sequence of the *tet(M)* amplicon was shared by all *U. parvum* and *M. hominis* clinical isolates, suggesting that these isolates originally acquired the *tet(M)* determinant from a common source. BLASTN analysis revealed equivalent identities (~96–97 %) with the sequence of *tet(M)* of Gardnerella vaginalis, the Streptococcus pneumoniae Tn916 integrative and conjugative element, Enterococcus faecalis, Lactobacillus salivarius and others. Genome BLAST analysis revealed 94 % identity with the corresponding *tet(M)*.
The finding that a single tet(M) sequence type was shared by all tetracycline-resistant U. parvum and M. hominis Tunisian clinical isolates prompted us to explore the genetic relationships of these isolates. For this purpose, we determined the nucleotide sequences of their MBA gene fragments, respectively. The phylogenetic relationships of the ureaplasma and M. hominis isolates are depicted in Figs 2 and 3, respectively. Of the 20 U. parvum isolates, 11 grouped with serovar 3, four with serovar 1 and five with serovar 6. Interestingly, the presence of tet(M) was not confined to a single cluster (Fig. 2). Likewise, M. hominis isolates genotyped according to sequence polymorphism in the surface-exposed domain of the P120’ protein showed a tet(M) distribution along the different branches of the phylogenetic tree (Fig. 3).

DISCUSSION

For a number of decades, tetracycline has been at the forefront of the antibiotic treatment arsenal of genital mycoplasma infections in Tunisia. However, curiously, data regarding the prevalence of resistance to this drug and the dynamics of resistance transmission are lacking. To our knowledge, this is the first study dealing with this aspect in this country.

We showed that tetracycline resistance rates in U. parvum and M. hominis clinical isolates (~23 and 25%, respectively) in Tunisia are rather high, especially for ureaplasmas, in comparison with European countries, probably due to the frequent and systematic use of tetracycline in recent decades. A study carried out in France revealed that 24 of 128 (18.77%) M. hominis and six of 276 (2.17%) U. urealyticum isolates, collected over a 4-year period, were tetracycline resistant (Dégrange et al., 2008). In the UK, among 61 ureaplasma isolates collected between 2003 and 2009, one isolate proved resistant to tetracycline (1.64%) (Beeton et al., 2011). In Hungary, in isolates collected between May 2008 and July 2010, 6.07% (15/247) and 11.54% (3/26) of U. urealyticum and M. hominis isolates were resistant to tetracycline, respectively (Farkas et al., 2011). Similar rates of tetracycline resistance were obtained in Germany according to a study involving 469 mycoplasma isolates (179 ureaplasmas and 290 M. hominis) collected over a 20-year period (Krause & Schubert, 2010), with observed tetracycline resistance rates of 1–3 and 10–13%, respectively. However, higher tetracycline resistance rates of U. urealyticum isolates (17%) were reported in China (Zhou et al., 2011), and the 45% (45/100) prevalence of tet(M) in ureaplasma isolates collected from a broad geographical area of the USA between 2000 and 2004 (Waites et al., 2005) suggests resistance rates even higher than those reported in Tunisia. Taken together, these data indicate a global variation in tetracycline resistance rates, probably due to different practices and policies.

All tetracycline-resistant clinical isolates harboured the tet(M) determinant along with int-Tn, indicating transposon-mediated transfer of tetracycline resistance. Dissemination
Fig. 1. Nucleotide sequence alignment of the tet(M) DNA fragment amplified from Tunisian U. parvum and M. hominis clinical isolates and the corresponding sequence of the tet(M)_Tn916 integrative and conjugative element from Streptococcus pneumoniae (GenBank accession no. FR671414.1). The dots indicate identical nucleotides and dashes indicate spaces between adjacent nucleotides introduced for maximum alignment.
of tet(M) has been shown to occur generally via a broad-host-range conjugative transposon such as Tn916 and Tn1545 (Bentorcha et al., 1992; Burdett, 1990). The fact that all tetracycline-resistant Tunisian isolates harboured both tet(M) and int-Tn strongly suggests that resistance was acquired through the transposition of a Tn916/Tn1545-like element. Strikingly, analysis of the tet(M) nucleotide sequence pointed to the widespread transfer of a single tet(M) sequence type, a finding generally associated with the clonal expansion of resistant strains. However, phylogenetic analyses revealed that tet(M) was harboured by genetically diverse U. parvum and M. hominis isolates, a finding compatible with resistance transmission, probably through horizontal transfer. The predominance of a single tet(M) gene sequence in different mycoplasma species and diverse isolates within each species may reflect an increased transmission competence of the conjugative element bearing this particular tet(M) sequence. Previous studies dealing with tet(M) evolution in other mycoplasma species have reported the predominance of certain sequence types. For instance, when the nucleotide sequence of the tet(M) gene was examined in five G. vaginalis of different biotypes, four isolates showed identical sequences along the whole tet(M) gene (Huang et al., 1997). Comparative sequence analysis of tet(M) in several mycoplasma isolates from Russia showed that the gene was completely identical in 11 of 13 M. hominis clinical strains (Soroka et al., 2002). By contrast, using a high-resolution restriction analysis, tet(M) variation in S. pneumoniae was shown to occur at both the inter- and intracline levels (Doherty et al., 2000), suggesting that tet(M) may evolve differently depending on the bacterial species. However, comparative analyses of several S. pneumoniae tet(M) sequences available in GenBank revealed a divergence rate of no more than 2% (data not shown).

Despite the fact that both U. parvum and M. hominis clinical isolates shared the same tet(M) sequence type, resistance levels to tetracycline were significantly higher in M. hominis. This finding is consistent with the fact that regulation of tetracycline resistance takes place at the transcriptional level. Hence, it is possible that the transcriptional environment in M. hominis is more favourable to the expression of a high-level resistance phenotype.

In conclusion, we have provided evidence for the inter- and intraspecies dissemination of a unique tet(M) sequence type in genetically diverse, tetracycline-resistant clinical isolates of U. parvum and M. hominis from Tunisia. The
and those grey. Bootstrap values (%) were obtained from 1000 resamplings, clinical isolates. Tetracycline-resistant isolates are highlighted in

Fig. 3. P120’-based phylogenetic tree of Tunisian *M. hominis* clinical isolates. Tetracycline-resistant isolates are highlighted in grey. Bootstrap values (%) were obtained from 1000 resamplings, and those >50% are shown next to their corresponding node. Bar, 0.001 nucleotide substitutions per site.

fact that this unique tet(M) sequence type was invariably associated with *int-Tn* argues for the transfer of a conjugative element that might be intrinsically endowed with an increased ability for transfer. It may be of interest to characterize this element fully in order to gain insight into the molecular basis underlying its success.

ACKNOWLEDGEMENTS

This study was funded by the Tunisian Ministry of Higher Education and Scientific Research.

REFERENCES

