Case Report

Osteoarticular infection by Candida albicans in an infant with cystic fibrosis

Kerstin Radike,1 Steffen Kunzmann,1 Marianne Abele-Horn,2 Meinrad Beer3 and Helge Hebestreit1

1Children’s Hospital University of Würzburg, Würzburg, Germany
2Institute for Microbiology, University of Würzburg, Würzburg, Germany
3Pediatric Radiology, University of Würzburg, Würzburg, Germany

Invasive candidiasis is rare in children after the neonatal period, but can occur in children with (secondary) immunodeficiency with a damaged gastrointestinal or skin barrier, or when receiving antibiotics. A 10-month-old girl was diagnosed as suffering from cystic fibrosis (CF) when showing failure to thrive, pulmonary symptoms and hypoproteinaemia. At that time, Candida albicans was identified from blood culture and treated intravenously with liposomal amphotericin B for 13 days. Six weeks later, the girl presented with osteoarticular infection of the left knee caused by C. albicans. The infection showed insufficient response to therapy with liposomal amphotericin B, but the patient recovered after therapy with fluconazole and flucytosine. Follow-up over 4 years revealed no sequelae. In conclusion, invasive Candida infections may occur in patients with CF, and preventive measures might be considered in patients at risk. In the case of an invasive infection, prolonged treatment with a combination of antifungal drugs may be required.

Introduction

Disseminated candidiasis is a major manifestation of opportunistic invasive mycoses. Risk factors include prematurity, central venous catheters, prolonged use of antibiotics, immunodeficiencies, malignancies, malnutrition, steroid use, abnormal skin barriers, gastrointestinal tract defects and surgery. Septic arthritis occurs in 1–2 % of patients with disseminated candidiasis (Pérez-Gómez et al., 1998). Infants younger than 6 months of age comprise 85 % of paediatric cases with fungal arthritis. In children, the knee is the joint involved most often and Candida albicans is the fungus isolated in approximately 80 % of cases (Swanson et al., 1996). Seventy to eighty per cent of septic arthritis cases caused by Candida occur in association with osteomyelitis (Lambertus et al., 1988; Swanson et al., 1996).

Despite frequent colonization of the airways in cystic fibrosis (CF) patients by Candida and other fungi (Chotirmall et al., 2010), invasive mycoses are rare and, to our knowledge, Candida osteoarticular infections have never been described so far in CF. Herein, we present a case of septic osteoarticular infection in a 12-month-old female patient with CF.

Case report

A 10-month-old female infant was admitted with severe failure to thrive, peripheral oedema, pneumonia and hypoproteinaemia (serum protein, 3.7 g dl−1; albumin, 1.9 g dl−1; IgG, 282 mg dl−1). She had a history of recurrent wheezing and multiple respiratory infections. The suspected diagnosis of CF was confirmed by three positive sweat tests and genetic testing (AF508 homozygote). Pneumonia was treated with intravenous cefotiam given via a peripheral indwelling catheter, whereon the patient showed clinical improvement (improved oral intake, slower and less shallow breathing). Selection of the antibiotic was based on a throat swab growing standard flora and non-Haemophilus influenzae species, but no other bacteria. However, after 9 days antibiotic therapy, the patient developed fever up to 40.6 °C, diarrhoea and elevated white blood cell count (WBC, 38 000 μl−1), C-reactive protein (CRP, 3.7 mg dl−1) and erythrocyte sedimentation rate (ESR, 91 mm h−1). Pseudomonas aeruginosa was detected in stool culture but not respiratory specimens, and antibiotic treatment was changed to ceftazidime and tobramycin. At the same time, mucocutaneous swabs and blood and stool and urine cultures were positive for Candida albicans, which was fully susceptible to amphotericin B (MIC, 0.12 μg ml−1; susceptible if ≤1 μg ml−1), fluconazole (MIC, 0.25 μg ml−1; susceptible if ≤8 μg ml−1) and flucytosine (MIC, 0.06 μg ml−1; susceptible if ≤4 μg ml−1), tested by microdilution test following CLSI guidelines M27-A2 and M44-A (NCCLS,

Abbreviations: CF, cystic fibrosis; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; MRI, magnetic resonance imaging; WBC, white blood cell count.

Received 24 February 2011
Accepted 18 May 2011

Correspondence
Kerstin Radike
Radike_K@klinik.uni-wuerzburg.de

Journal of Medical Microbiology (2011), 60, 1542–1545
DOI 10.1099/jmm.0.031757-0
2002a, b). Intrathoracic and intra-abdominal organ involvement was excluded. The patient was treated with liposomal amphotericin B (3 mg kg\(^{-1}\) day\(^{-1}\)) and local miconazole, and improved quickly. After 13 days, treatment was discontinued on request of the parents and against medical advice. The patient was discharged in good clinical condition without signs of active infection (normothermia; WBC, 12 360 µl\(^{-1}\); CRP, 0.05 mg dl\(^{-1}\)).

Six weeks later, the patient presented with fever (39 °C) and swelling, warmness and movement restriction of the left knee joint. The patient had no history of trauma and no signs of an upper respiratory tract infection. Laboratory diagnostics showed a WBC of 9 900 µl\(^{-1}\), CRP of 2.2 mg dl\(^{-1}\) and ESR of 90 mm h\(^{-1}\). Assessment of the joint by ultrasound revealed synovial thickening and an effusion of 5 mm. Magnetic resonance imaging (MRI) showed widespread myositis and osteomyelitis in the distal femoral epiphysis and patella, as well as gonarthritis (Fig. 1). Arthrocentesis yielded purulent secretion (leukocytes, 3400 m\(^{-1}\); neutrophil granulocytes, 91 %) and evidence of \textit{C. albicans} in culture and PCR (fully susceptible to amphotericin B, fluconazole and flucytosine). Cutaneous swabs and stool and blood cultures showed no evidence of \textit{C. albicans}. Further evaluation yielded no additional fungal foci in the cranium, thorax or abdominal organs. Repeated evaluations for congenital immunodeficiency (oxidative burst, lymphocyte subpopulations, immunoglobulin levels including IgG subfractions, vaccination antibodies) were normal.

Treatment for septic osteoarticular infection was started with clindamycin and liposomal amphotericin B (3 mg kg\(^{-1}\) day\(^{-1}\)). In a follow-up MRI 10 days later, persisting myositis and gonarthritis were evident. The antifungal therapy was changed to fluconazole (12 mg kg\(^{-1}\) day\(^{-1}\)) and flucytosine (100 mg kg\(^{-1}\) day\(^{-1}\)). Clindamycin was stopped after 15 days (cultures were negative for bacteria). After slow clinical improvement over the initial 3 weeks of therapy, MRI showed progressive inflammation (Figs 1 and 2) and the ESR rose from 27 mm h\(^{-1}\) 23 days after the start of treatment to 61 mm h\(^{-1}\) 5 days later (WBC, 7 000 µl\(^{-1}\); CRP, 3.0 mg dl\(^{-1}\)). In consequence, the flucytosine dose was increased (150 mg kg\(^{-1}\) day\(^{-1}\)) and, since there was some discussion whether staphylococcal disease could be excluded fully, antibiotic therapy with clindamycin was restarted for 22 days. After 6 weeks, intravenous therapy was stopped and oral fluconazole was given for 4 additional months.

At follow-up examinations over 4 years, the girl was physically highly active with no sequelae and no signs of arthritis or movement restriction.

Discussion

Invasive bacterial or fungal diseases are rare in CF. To our knowledge, we describe the first patient with CF presenting with \textit{Candida} osteoarticular infection. Six weeks prior to this infection, the patient had suffered candidaemia possibly facilitated by CF-related malnutrition, hypoproteinaemia with hypothesized secondary immunodeficiency, an indwelling peripheral intravenous catheter, and mucosal candidiasis during intravenous antibiotic therapy. Possibly, some transient immunodeficiency in our patient might also have facilitated the formation of a \textit{Candida} nidus and the initial growth of the fungus in bradytrophic tissues. In our patient, there was no evidence for additional congenital immunodeficiency, which is a main risk factor for invasive candidiasis. There is also no evidence that patients with CF per se have a compromised defence against invasive \textit{Candida} infections.

Guidelines for the treatment of candidaemia available at the time of disease in our patient recommended amphotericin B until complete resolution of signs and symptoms and at least for 14–21 days after the last positive blood culture (Pappas et al., 2004). It is likely that the initial therapy with liposomal amphotericin B for 13 days was too short to be effective. As first-line therapy in \textit{Candida} osteoarticular infections, an initial course of amphotericin B (3–5 mg kg\(^{-1}\) day\(^{-1}\)) for 2–3 weeks, followed by fluconazole (6 mg kg\(^{-1}\) twice daily) for a total duration of 6–12 months.

Fig. 1. Sagittal MRI (T1 TSE) of the left knee over time. At baseline, increased contrast uptake of the synovia (asterisk) as well as the bursae (arrow) is seen; during follow-up after an initial increase in disease activity, significant reduction of pathological enhancement at the final control is observed. P, Patella; F, femur; T, tibia.
therapy with an echinocandin for several weeks followed by fluconazole for 6–12 months is also recommended in the guidelines (Pappas et al., 2009). For caspofungin, attention should be paid to the importance of dosing based on body surface area rather than weight (50 mg m$^{-2}$). As the available recommendations (Pappas et al., 2004, 2009) are based on limited data mostly from case reports or retrospective studies, further studies are needed.

Differential diagnosis of osteoarticular infections includes idiopathic rheumatoid arthritis and, in CF, CF-related arthropathy, which may also present with pain, swelling, tenderness and limitation of movement of joint as well as fever (Thornton & Rangaraj, 2009).

In conclusion, invasive Candida infections may occur in patients with CF and preventive measures should be considered in patients with risk factors such as malnutrition, prolonged antibiotic therapies and/or central venous catheters.

Acknowledgements

The case was presented at the German CF meeting in November 2007.

References

