Case Report

‘Neisseria skkuensis’ sp. nov., isolated from the blood of a diabetic patient with a foot ulcer

Mi Young Lee,1† Eu Gene Park,2† Ji Young Choi,3† Hae Suk Cheong,4 Doo Ryeon Chung,4 Kyong Ran Peck,4 Jae-Hoon Song1,4 and Kwan Soo Ko1,3

1Asian-Pacific Research Foundation for Infectious Diseases (ARFID), Seoul, Republic of Korea
2Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
3Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
4Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea

A Gram-negative bacterium was isolated from the blood of a patient with diabetes mellitus. However, it could not be identified by conventional microbiological methods, and so was characterized by phenotypic and genotypic analyses. 16S rRNA gene sequence analysis revealed that the strain belonged to the genus Neisseria. Based on the phenotypic and genotypic characteristics, we propose that strain SMC-A9199T (=KCTC 22696T=JCM 16127T) should be classified as a novel species, ‘Neisseria skkuensis’ sp. nov. The patient was further treated with amoxicillin–clavulanate and ciprofloxacin for 3 weeks.

Introduction

The genus Neisseria comprises coccal or rod-shaped Gram-negative bacteria arranged in pairs or short chains (Janda & Gaydos, 2007). It includes a group of closely related Gram-negative bacteria that are primarily commensal inhabitants of the mucus membrane of mammals. At the time our work was undertaken, the genus consisted of 19 species (http://www.bacterio.cict.fr/), which are commensal inhabitants of the mucous membrane surfaces of warm-blooded hosts (Janda & Gaydos, 2007). Of these, 15 species are of human origin, with Neisseria meningitidis and Neisseria gonorrhoeae being important pathogens, and the others being opportunistic pathogens (Han et al., 2006; Vandamme et al., 2006). In this study, we report a novel Neisseria species isolated from the blood and wound pus of a diabetic patient with a foot ulcer. The bacteria could be identified as Neisseria spp. by conventional methods, such as VITEK (bioMérieux) and MicroScan (Dade-Microscan), in a clinical microbiology lab, but correct identification at the species level could not be obtained. Comparative 16S rRNA gene sequence analysis along with phenotypic analysis showed that the isolate is a novel species of Neisseria.

Case report

A 50-year-old man with diabetes mellitus (DM) visited the Emergency Department at Samsung Medical Center, Seoul, Republic of Korea, because of fever and chills. The patient had been suffering from complications of DM, such as right DM foot and chronic renal failure. At the Emergency Department, the patient was treated with amoxicillin–clavulanate. For further management, the patient was admitted to a tertiary-care hospital (Samsung Medical Center, Seoul). On the second hospital day, right foot magnetic resonance imaging was carried out and was found not to be within normal limits. An isolate was identified in blood culture as Neisseria and was designated SMC-A9199T; identification at the species level could not be done. Neisseria was isolated from pus culture of the right fifth metatarsophalangeal joint, and designated SMC-G2063, along with Enterobacter cloacae. Later, SMC-G2063 was identified as the same strain as SMC-A9199T. On the ninth day of hospitalization, the amoxicillin–clavulanate was replaced by tazobactam–piperacillin. Subsequently, the patient was further treated with amoxicillin–clavulanate and ciprofloxacin for 3 weeks. Ultimately, he was well enough to leave the hospital.

Bacterial isolate

Strain SMC-A9199T was Gram-negative, when stained at room temperature. It grew well aerobically on sheep blood agar and chocolate agar at 35 °C in an atmosphere of 5% CO2 after 24 h incubation. Colonies were round and light grey, and...
measured 0.5–1 mm in diameter when incubated for 24 h. For phenotypic characterization, the API 20NE and API 50CHB systems (bioMérieux) were used according to the recommendations of the manufacturer. Routine control organisms (Pseudomonas aeruginosa and Escherichia coli) were included in the tests. The biochemical reaction results are shown in Table 1 with those of other Neisseria species. Strain SMC-A9199T was oxidase and catalase positive, consistent with most Neisseria species (Lawson et al., 2005). API20NE results were positive only for assimilation of glucose. It was negative for the reduction of nitrates to nitrites and nitrites to nitrogen. When tested with API 50CHB, strain SMC-A9199T could utilize ribose, glucose, fructose, mannitol, sucrose and gluconate, but not the remaining carbohydrates.

For molecular identification, the 16S rRNA gene was amplified using primer sets 16S-F3 (5′-CAG GCC TAA CAC ATG CAA-3′) and 16S-R3 (5′-GGG CGG WGT GTA CAA GGC-3′) (Shin et al., 2008). A 1415 bp sequence of the 16S rRNA gene (positions 57–1469 in Escherichia coli) (GenBank accession no. FJ763637) was obtained from strain SMC-A9199T. The 16S rRNA gene sequence was compared with those in the EzTaxon public database (http://www.eztaxon.org/) (Chun et al., 2007) and the GenBank database (http://www.ncbi.nlm.nih.gov/blast) using BLAST searches. The 16S rRNA gene sequence of SMC-A9199T and those of the type strains of other Neisseria species retrieved from the EzTaxon database were aligned using the CLUSTAL_X program. Phylogenetic relationships among them were determined by the neighbour-joining method of the CLUSTAL_X program. The robustness of the branch was assessed by bootstrap analysis from 1000 replications. In addition to the 16S rRNA gene, fragments of the argF and recA of strain SMC-A9199T were also amplified and sequenced as described by Smith et al. (1999). Analysis of the cellular fatty acid (CFA) composition was accomplished using a Hewlet Packard 6890A gas chromatograph and the MIDI aerobe method (Chem Station ver. 4.02) at MicroID (Daejon, Republic of Korea). The mol% G + C content was determined via thermal denaturation. In vitro antimicrobial susceptibility testing was performed by estimating the MICs to penicillin, cefotaxime, cefoxitin, ceftazidine, tetracycline, ciprofloxacin, erythromycin, clindamycin and trimethoprim–sulfamethoxazole using the broth microdilution method in accordance with the guidelines established by the Clinical and Laboratory Standards Institute (CLSI, 2008). Interpretive criteria for susceptibility were those for N. gonorrhoeae (CLSI, 2008).

In phylogenetic analysis, the isolate clustered with Neisseria animalis NCTC 10212T, Neisseria elongata ATCC 25295T and Neisseria lactamica NCTC 10617T, and its grouping was supported by bootstrap analysis (bootstrap value 62 %) (Fig. 1). The 16S rRNA gene sequences of strain SMC-A9199T showed the highest pairwise similarity (97.5 %) to that of the type strain of N. animalis NCTC 10212T. It exhibited pairwise similarities <97.0 % with other species. Recently, Stackebrandt & Ebers (2006) suggested the 98.7 % guideline, indicating that a strain with a 16S rRNA gene sequence similarity <98.7 % with known species may be placed as a novel species instead of estimating DNA relatedness. Within the genus Neisseria, several species present with >97 % 16S rRNA gene sequence similarities. For example, Neisseria polysaccharea showed 98.0 and 98.6 % similarities with Neisseria flavescens and N. gonorrhoeae, respectively. A pairwise similarity of 98.0 % was evident for N. flavescens and Neisseria weaveri. Accordingly, 97.5 % pairwise similarity between strain SMC-A9199T and N. animalis might be enough to consider SMC-A9199T as a novel Neisseria species. SMC-G2063, an isolate from pus, showed the same 16S rRNA gene sequences with SMC-A9199T.

The argF and recA sequences determined for SMC-9199T (GenBank accession nos FJ787491 and FJ787492, respect-

Table 1. Comparison of biochemical reactions of strain SMC-A9199T and other Neisseria species

The data for other Neisseria species were taken from the literature (Han et al., 2006; Janda & Gaydos, 2007; Lawson et al., 2005). N. Neisseria.

<table>
<thead>
<tr>
<th>Species</th>
<th>Glucose</th>
<th>Maltose</th>
<th>Lactose</th>
<th>Sucrose</th>
<th>Fructose</th>
<th>Reduction of Nitrate</th>
<th>Oxidase</th>
<th>Catalase</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMC-A9199T</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. gonorrhoeae</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. meningitidis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N. lactamica</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. cinerea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. polysaccharea</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. subflava</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N. sicca</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. mucosa</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N. flavescens</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N. elongata</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N. bacilliformis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
ively) were also compared with those in GenBank using BLAST searches. The argF sequence of SMC-A9199T showed the highest similarity with that of *Neisseria pharynges* var. *flava* NCTC 4590 (84.4 %), followed by *Neisseria sicca* NRL 30016 (83.5 %). The recA sequence of SMC-A9199T was the most similar to that of *N. mucosa* (86.1 %), followed by *N. pharynges* var. *flava* NCTC 4590 (85.9 %) and *N. flavescens* LNP 444 (84.8 %). Of these, *N. pharynges* is not a valid named species, although the National Collection of Type Cultures cites this as such. Although there are no guidelines for defining new species for argF and recA gene similarities, dissimilarities may suggest that SMC-A9199T is a different species from other *Neisseria* species.

Like other *Neisseria* species, the major CFA components of SMC-A9199T were C16:1ω7c (35.3 %), C16:0 (18.2 %) and C18:1ω7c (10.9 %). The DNA G + C content of strain SMC-A9199T was 51.2 mol%. Comparatively, strain SMC-A9199T displayed intermediate resistance against only tetracycline (MIC 0.5 mg l⁻¹), but was susceptible to the other antimicrobial agents such as penicillin, cefotaxime, cefoxitin, cefazidime, tetracycline and ciprofloxacin. The strain showed relatively high erythromycin and clindamycin MIC values (both 4 mg l⁻¹) and a low trimethoprim–sulfamethoxazole MIC (0.03 mg l⁻¹), but no breakpoints were provided by theClinical and Laboratory Standards Institute.

Discussion

Among 19 validated species of the genus *Neisseria*, 15 have been reported as being of human origin. Although *N. meningitidis* and *N. gonorrhoeae* are important pathogens, most human *Neisseria* species are regarded as commensal inhabitants not pathogens (Janda & Gaydos, 2007). However, several *Neisseria* species other than *N. meningitidis* and *N. gonorrhoeae* cause human infections. For example, *N. flavescens* has been linked to an outbreak of meningitis, and *Neisseria cinerea* causes conjunctivitis and has been isolated from patients with endocervical and rectal infections, and with lymphadenitis (Janda & Gaydos, 2007). In addition, *N. lactamica* has been isolated from the urogenital tract, and three subspecies of *N. elongata* cause human diseases such as septicemia (Hombrouck-Alet et al., 2003). It has been reported that the recently identified species, *Neisseria bacilliformis*, also causes respiratory infections and endocarditis (Han et al., 2006). Human infections by *N. weaveri*, *Neisseria animaloris* and *Neisseria zoodegmatis* have been reported repeatedly (Capitini et al., 2002; Vandamme et al., 2006). In this study, we report a
novel *Neisseria* species, ‘*Neisseria skkuensis*’, which is associated with human infection (a foot ulcer in a diabetic patient), mainly based on housekeeping gene sequences. This finding may indicate that more *Neisseria* species cause human diseases, although many may be opportunistic pathogens. Like other commensal *Neisseria* species, this organism also shows susceptibility to most antimicrobial agents tested.

Description of ‘*Neisseria skkuensis*’ sp. nov.

‘*Neisseria skkuensis*’ (skku.en’sis. N.L. fem. adj. skkuensis of or belonging to SKKU, an acronym of Sungkyunkwan University, where this study was performed).

Cells are aerobic, Gram-negative, grow well on sheep blood agar and chocolate agar plates at 35 °C with 5% CO₂, and present round and light grey colonies 0.5–1 mm in diameter. Acid is produced from ribose, glucose, fructose, mannitol, sucrose and gluconate, but not from glycerol, erythritol, D-arabinose, L-arabinose, D-xylose, L-xylose, adonitol, β-methyl-D-xyloside, galactose, mannose, sorbose, rhamnose, dulcitol, inositol, sorbitol, α-methyl-D-mannoside, α-methyl-D-glucoside, N-acetylglucosamine, amygdalin, arbutin, aesculin, salicin, cellobiose, maltose, lactose, melibiose, trehalose, inulin, melezitose, raffinose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, D-arabitol, L-arabitol, 2-keto-gluconate and 5-keto-gluconate. It is negative for the reduction of nitrates to nitrites and nitrites to nitrogen. It does not produce indole, arginine dihydrolase, reduction of nitrate to nitrite and nitrite to nitrogen. It is negative for the production of argF, recA, rho, and 16S rRNA sequences from human *Neisseria* species. The DNA G+C content of the type strain is 51.2 mol%. The type strain is strain SMC-A9199T (=KCTC 22696T = JCM 16127T).

Acknowledgements

This study was supported by the Samsung Biomedical Research Institute (SBRI, Seoul, Republic of Korea) (grant BA90011).

References

