Case Report

Mycobacterium marinum infection complicated by anti-tumour necrosis factor therapy

José M. Ramos, Mariana F. García-Sepulcre, Juan C. Rodríguez, Sergio Padilla and Félix Gutiérrez

Correspondence
José M. Ramos
jramosrincon@yahoo.es

1Infectious Diseases Unit, Internal Medicine Department, Hospital General Universitario de Elche, Alicante, Spain
2Digestive Section, Hospital General Universitario de Elche, Alicante, Spain
3Microbiology Section, Hospital General Universitario de Elche, Alicante, Spain

Received 2 November 2009
Accepted 2 February 2010

Mycobacteria other than tuberculosis infections in patients taking various tumour necrosis factor (TNF)-α inhibitors have been reported in the literature. We describe sporotrichoid spread of Mycobacterium marinum in a man with Crohn’s disease treated with infliximab. After starting ethambutol and rifampicin and discontinuing infliximab, a worsening appeared. M. marinum infection may have a potential local spread and systemic dissemination in patients treated with TNF-α inhibitors.

Case report

A 32-year-old man was referred to our department because of cellulitis of the thumb on the right hand despite a course of cloxacillin and another of amoxicillin/clavulanic acid. His medical history included Crohn’s disease since 1996. In September 2005, he had been started on infliximab infusions with an excellent clinical response. A tuberculin skin test performed before administration of infliximab was negative and a chest X-ray revealed no evidence of active or prior tuberculosis. After 6 months, the infliximab infusion was stopped. In September 2007, his disease worsened despite maintaining a background therapy that included prednisone (10 mg daily), mesalazine (1 g daily) and metronidazole (500 mg daily), and infliximab was added to the regimen. Six weeks after starting with the infliximab, he presented with skin lesions on his right thumb and forearm. He did not recall preceding trauma. He reported caring for fishes in a domestic aquarium. On physical examination, the thumb was erythematous and scaly, and there were two red and painful inflammatory papules on the distal forearm and multiple scattered subcutaneous nodules on the ipsilateral proximal forearm and distal arm with a sporotrichoid pattern (Fig. 1a). Regional lymphadenopathy was absent and a general examination was otherwise unremarkable. A biopsy was done. Microscopic examination of the skin biopsies revealed necrotizing and granulomatous inflammation. A Ziehl–Neelsen stain revealed many acid-fast bacilli, and a photochromogenic mycobacterium was grown in culture within 10 days. It was identified as Mycobacterium marinum by 16S rRNA gene sequencing methods.

Therapy with ethambutol, 1200 mg per day, and rifampicin, 600 mg per day, was started and infliximab was discontinued.

One month later, the skin lesion on the thumb had improved but the subcutaneous nodules on the forearm had increased markedly in size and new ulcerated lesions had appeared on the forearm. In addition, a sinus with purulent discharge had developed at the site of the distal lesion (Fig. 1b) from which M. marinum was cultured. At that time, clarithromycin, 500 mg twice daily, was added. Two months later, the size of the previous ulcerated nodules had decreased, but new red and ulcerated lesions had appeared on the previous nodules. No organisms were found by Ziehl–Neelsen staining of the pus from the new lesions, and culture on Löwenstein–Jensen medium did not grow organisms. Due to worsening of rectal symptoms, immunosuppressive therapy with 6-mercaptopurine (150 mg daily) was started. At month 3, new red suppurative lesions appeared over previously subcutaneous nodules. Ziehl–Neelsen stain and cultures of the pus for mycobacteria were again negative. The dose of prednisone was raised to 20 mg daily. At month 4, several nodules with scanty suppuration and a hard consistency were present (Fig. 1c). A Ziehl–Neelsen stain and cultures for mycobacteria were repeatedly negative. At month 7, only hard subcutaneous nodules and scars were seen without ulcerative or suppurative lesions. Rifampicin and ethambutol were stopped and clarithromycin was continued; prednisone was decreased to 10 mg. At month 10, only scars were present at the level of the previous suppurative lesions. However, a new red subcutaneous nodule appeared on the distal arm that drained scanty pus from which a Ziehl–Neelsen stain revealed some acid-fast bacilli, but

Abbreviations: MOTT, mycobacteria other than tuberculosis; TNF, tumour necrosis factor.
cultures for mycobacteria were negative. Rifampicin and ethambutol were introduced again. Fortunately, at month 11, the lesion resolved. Susceptibility testing showed that the strains were sensitive to clarithromycin, rifampicin, ethambutol and ofloxacin. The antibiotic treatment was finally stopped at month 14 after diagnosis.

Discussion

Infliximab has been associated with an increased risk of tuberculosis (Keane et al., 2001). This risk is less clear for infections caused by mycobacteria other than tuberculosis (MOTT) (Salvana et al., 2007).

Tumour necrosis factor (TNF) has an important role in granuloma formation and maintenance (Ehlers, 2005). While the increased risk for reactivation of latent tuberculosis on treatment with TNF-α inhibitors is well described, less clear is the risk for MOTT infections (Salvana et al., 2007). Wallis et al. (2004) reported 29 unspecified MOTT infections in 197 000 patients treated with infliximab and 113 000 with etanercept from the US Food and Drug Administration (FDA) adverse events reporting system. Recently, Winthrop et al. (2009) presented 239 reports of MOTT infection in patients who were receiving anti-TNF-α therapy recovered from the FDA postmarketing surveillance system (MedWatch database) through 1 January 2007. These reports are not confirmed MOTT infections, as the reporting procedure might not be sufficient to fulfil the American Thoracic Society diagnostic criteria of MOTT infection (Griffith et al., 2007).

Moreover, several case reports of MOTT infection developing in patients taking various TNF-α inhibitors have been recovered from the PubMed database. At least 12 species of MOTT have been described, including Mycobacterium abscessus (Mufti et al., 2005), Mycobacterium avium (Salvana et al., 2007), Mycobacterium aurum (Martín-Aspas et al., 2008), Mycobacterium chelonae (Díaz et al., 2008), Mycobacterium fortuitum (Boulman et al., 2006), Mycobacterium haemophilum (Swart et al., 2009), Mycobacterium kansasii (Malkin et al., 2009), Mycobacterium marinum (Chopra et al., 2002; Rallis et al., 2007; Fallon et al., 2008; Danko et al., 2009; Dare et al., 2009), Mycobacterium mucogenicum (Shehan & Sarma, 2008), Mycobacterium peregrinum (Marie et al., 2005), Mycobacterium xenopi (Yim et al., 2004) and Mycobacterium szulgai (van Ingen et al., 2007). The main sites of infection were the pulmonary region and skin and soft tissue (Winthrop et al., 2009). Cutaneous infections by MOTT have been caused mainly by M. marinum (Rallis et al., 2007; Fallon et al., 2008; Danko et al., 2009; Dare et al., 2009) and less commonly by M. abscessus (Mufti et al., 2005), M. chelonae (Díaz et al., 2008) and M. mucogenicum (Shehan & Sarma, 2008).

![Fig. 1. (a) Erythematous and verrucous plaque on the thumb (at diagnosis); (b) painful, suppurative papules and nodules on the forearm (1 month after diagnosis); (c) several nodules with scanty pus discharge and a hard consistency (4 months after diagnosis).](image-url)
Table 1. Summary of the reported cases of *Mycobacterium marinum* infection in patients receiving TNF-α inhibitors recovered from PubMed

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex, age in years</th>
<th>Underlying disease*</th>
<th>TNF-α inhibitor</th>
<th>Other immunosuppressive drugs</th>
<th>Delay from start of anti-TNF therapy to infection (months)</th>
<th>Clinical</th>
<th>Treatment†</th>
<th>Total duration (months)</th>
<th>Outcome</th>
<th>Worsening after starting treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chopra et al. (2002)</td>
<td>M, 61</td>
<td>RA</td>
<td>Etanercept</td>
<td>No</td>
<td>8</td>
<td>Tenosynovitis (wrist)</td>
<td>CLA and surgery</td>
<td>3</td>
<td>Recovered</td>
<td>No</td>
</tr>
<tr>
<td>Fallon et al. (2008)</td>
<td>F, 37</td>
<td>AS</td>
<td>Infliximab</td>
<td>Azathioprine</td>
<td>24</td>
<td>Skin infection (lower extremity with sporotrichotic distribution)</td>
<td>DOX, CLA, RIF</td>
<td>NR</td>
<td>Recovered</td>
<td>No</td>
</tr>
<tr>
<td>Rallis et al. (2007)</td>
<td>M, 45</td>
<td>CD</td>
<td>Infliximab</td>
<td>No</td>
<td>7</td>
<td>Skin infection (upper extremity with sporotrichotic distribution)</td>
<td>RIF, ETB</td>
<td>8</td>
<td>Recovered</td>
<td>No</td>
</tr>
<tr>
<td>Dare et al. (2009)</td>
<td>M, 64</td>
<td>AS</td>
<td>Etanercept</td>
<td>No</td>
<td>12</td>
<td>Skin infection (upper extremity with sporotrichotic distribution)</td>
<td>SXT</td>
<td>12</td>
<td>Recovered</td>
<td>No</td>
</tr>
<tr>
<td>Danko et al. (2009)</td>
<td>F, 51</td>
<td>RA</td>
<td>Infliximab</td>
<td>Methotrexate</td>
<td>33</td>
<td>Skin infection, abscess and osteomyelitis</td>
<td>CLA, RIF, ETB, MOX and surgical drainage</td>
<td>NR</td>
<td>Recovered</td>
<td>Yes</td>
</tr>
<tr>
<td>This report</td>
<td>M, 32</td>
<td>CD</td>
<td>Infliximab</td>
<td>Prednisone</td>
<td>36</td>
<td>Skin infection (upper extremity with sporotrichotic distribution)</td>
<td>CLA, RIF, ETB</td>
<td>14</td>
<td>Recovered</td>
<td>Yes</td>
</tr>
</tbody>
</table>

NR, Not recorded.

*RA, rheumatoid arthritis; AS, ankylosing spondylitis; CD, Crohn’s disease.
†CLA, clarithromycin; DOX, doxycycline; RIF, rifampicin; ETB, ethambutol; SXT, co-trimoxazole; MOX, moxifloxacin.
M. marinum causes diseases in many fish species and is distributed worldwide. Infection occurs by direct injury from fish fins or after cutaneous trauma and subsequent exposure to contaminated water (Piersimoni & Scarparo, 2009). An increasing number of cases in immunocompetent and immunodepressed hosts have been reported (Piersimoni & Scarparo, 2009; Pandian et al., 2008). A presumptive identification can be made by production of photochromogenic pigment and a positive test for urease. However, a definitive identification involves reverse hybridization techniques or HPLC analysis of mycoclastic acids and DNA sequencing assays (Piersimoni & Scarparo, 2009).

Five previous cases of M. marinum infection in patients using TNF-α inhibitors have been reported in the literature (from January 2000 to October 2009) (Chopra et al., 2002; Fallon et al., 2008; Rallis et al., 2007; Danko et al., 2009; Dare et al., 2009). A summary of these cases along with the case reported here is shown in Table 1. The first case report was a tenosynovitis on the wrist occurring in a patient with rheumatoid arthritis receiving etanercept (Chopra et al., 2002). In three cases, the disease remained confined to the cutis on extremities with sporotrichotic distribution (Rallis et al., 2007; Fallon et al., 2008; Dare et al., 2009). One case of disseminated M. marinum infection (cutaneous, abscess and osteomyelitis) was reported in a patient receiving infliximab (Danko et al., 2009).

Our patient’s course worsened clinically after stopping infliximab while on anti-M. marinum treatment, and M. marinum was isolated from a subcutaneous nodule after 1 month. After 1 month, occasional acid-fast bacilli were seen in many specimens, but cultures were negative for M. marinum. Danko et al. (2009) describe a case of cutaneous infection caused by M. marinum in which disseminated disease appeared 3 weeks after stopping anti-TNF therapy and starting a rifampicin and ethambutol therapy. Also a new lesion appeared after clarithromycin was added to the treatment. Cultures were negative for M. marinum after initiation of therapy. Our case and the case of Danko et al. (2009) illustrate that a potential local and systemic dissemination may be occurring in patients using anti-TNF therapy. Disseminated M. marinum infections have been reported in other immuno-compromised patients such as transplant recipients (Pandian et al., 2008) or a patient treated with oral corticosteroids (Streit et al., 2006). The exact duration of antibiotic therapy for M. marinum infection is not defined in the anti-TNF therapy population, and should be individualized.

In conclusion, cutaneous infections with a sporotrichoid pattern of spread should raise the suspicion of M. marinum infection and a potential local spread and systemic dissemination during the treatment and after stopping TNF-α inhibitors.

Acknowledgements

We thank the staff of the Digestive, Microbiology, and Dermatology Service of Hospital General Universitario de Elche and the National Tuberculosis Reference Laboratory (Centro Nacional de MicroBiologia, Instituto de Salud Carlos III, Madrid, Spain) for help and support during the field investigations.

References


