1887

Abstract

, carried by ticks, is one of the most significant human pathogens, causing Lyme disease. As there is no standardized PCR method for detection and identification of spirochaete DNA, we carried out a comparative analysis using a set of complementary primers for three regions in the genomic DNA of these bacteria (genes and and the non-coding region). DNA extracted from 579 ticks was subjected to nested PCR. DNA of the examined spirochaetes was detected in 43 (7.4 %) lysates when the gene was used as a molecular marker, in 7 (1.2 %) lysates when using primers complementary to the gene, and in 12 (2.1 %) lysates using primers complementary to the non-coding sequence. RFLP analysis based on the gene helped identify species from the complex ( , , , ), detect co-infections, and also identify . Therefore, the gene is the most sensitive and specific molecular marker for the detection and identification of spirochaetes in

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.013508-0
2010-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/3/309.html?itemId=/content/journal/jmm/10.1099/jmm.0.013508-0&mimeType=html&fmt=ahah

References

  1. Aguero-Rosenfeld M. E. 2003; Laboratory aspects of tick-borne diseases: lyme, human granulocytic ehrlichiosis and babesiosis. Mt Sinai J Med 70:197–206
    [Google Scholar]
  2. Basta J., Hulinska D., Plch J., Daniel M. 1999; Single-step polymerase chain reaction in the detection of Borrelia burgdorferi and the genome species in the Ixodes ricinus tick. Epidemiol Mikrobiol Imunol 48:167–170
    [Google Scholar]
  3. Burgdorfer W., Barbour A. G., Hayes S. F., Benach J. L., Grunwaldt E., Davis J. P. 1982; Lyme disease – a tick-borne spirochetosis?. Science 216:1317–1319 [CrossRef]
    [Google Scholar]
  4. Cinco M., Padovan D., Murgia R., Poldini L., Frusteri L., van de Pol I., Verbeek-De Kruif N., Rijpkema S., Maroli M. 1998; Rate of infection of Ixodes ricinus ticks with Borrelia burgdorferi sensu stricto, Borrelia garinii , Borrelia afzelii and group VS116 in an endemic focus of Lyme disease in Italy. Eur J Clin Microbiol Infect Dis 17:90–94
    [Google Scholar]
  5. Cisak E., Chmielewska-Badora J., Zwoliński J., Wójcik-Fatla A., Polak J., Dutkiewicz J. 2005; Risk of tick-borne bacterial diseases among workers of Roztocze National Park (south-eastern Poland). Ann Agric Environ Med 12:127–132
    [Google Scholar]
  6. Fraenkel C. J., Garpmo U., Berglund J. 2002; Determination of novel Borrelia genospecies in Swedish Ixodes ricinus ticks. J Clin Microbiol 40:3308–3312 [CrossRef]
    [Google Scholar]
  7. Guy E. C., Stanek G. 1991; Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol 44:610–611 [CrossRef]
    [Google Scholar]
  8. Iyer R., Hardham J. M., Wormser G. P., Schwartz I., Norris S. J. 2000; Conservation and heterogeneity of vlsE among human and tick isolates of Borrelia burgdorferi . Infect Immun 68:1714–1718 [CrossRef]
    [Google Scholar]
  9. Kondrusik M., Grygorczuk S., Skotarczak B., Wodecka B., Pancewicz S., Zajkowaska J., Swierzbińska R., Hermanowska-Szpakowicz T. 2004; The polymerase chain reaction evaluation of Borrelia burgdorferi DNA presence in peripheral blood of patients with Lyme disease. Pol Merkur Lekarski 17:593–596
    [Google Scholar]
  10. Lee S. H., Kim B. J., Kim J. H., Park K. H., Kim S. J., Kook Y. H. 2000; Differentiation of Borrelia burgdorferi sensu lato on the basis of RNA polymerase gene ( rpoB ) sequences. J Clin Microbiol 38:2557–2562
    [Google Scholar]
  11. Lin T., Oliver J. H. Jr, Gao L. 2002; Genetic diversity of the outer surface protein C gene of southern Borrelia isolates and its possible epidemiological, clinical, and pathogenetic implications. J Clin Microbiol 40:2572–2583 [CrossRef]
    [Google Scholar]
  12. Liveris D., Varde S., Iyer R., Koenig S., Bittker S., Cooper D., McKenna D., Nowakowski J., Nadelman R. B. other authors 1999; Genetic diversity of Borrelia burgdorferi in Lyme disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol 37:565–569
    [Google Scholar]
  13. Lünemann J. D., Krause A. 2003; Heterogeneity of Borrelia burgdoferi : etiopathogenetic relevance and clinical implications. Z Rheumatol 62:148–154 [CrossRef]
    [Google Scholar]
  14. Margos G., Vollmer S. A., Cornet M., Garnier M., Fingerle V., Wilske B., Bormane A., Vitorino L., Collares-Pereira M. other authors 2009; A new borrelia species defined by multilocus sequence analysis of housekeeping genes. Appl Environ Microbiol 75:5410–5416 [CrossRef]
    [Google Scholar]
  15. Michalik J., Skotarczak B., Skoracki M., Wodecka B., Sikora B., Hofman T., Rymaszewska A., Sawczuk M. 2005; Borrelia burgdorferi sensu stricto in yellow-necked mice and feeding Ixodes ricinus ticks in a forest habitat of west central Poland. J Med Entomol 42:850–856 [CrossRef]
    [Google Scholar]
  16. Picken R. N. 1992; Polymerase chain reaction primers and probes derived from flagellin gene sequences for specific detection of the agents of Lyme disease and North American relapsing fever. J Clin Microbiol 30:99–114
    [Google Scholar]
  17. Picken M. M., Picken R. N., Han D., Cheng Y., Strle F. 1996; Single-tube nested polymerase chain reaction assay based on flagellin gene sequences for detection of Borrelia burgdorferi sensu lato. Eur J Clin Microbiol Infect Dis 15:489–498 [CrossRef]
    [Google Scholar]
  18. Pinne M., Östberg Y., Comstedt P., Bergström S. 2004; Molecular analysis of the channel-forming protein P13 and its paralogue family 48 from different Lyme disease Borrelia species. Microbiology 150:549–559 [CrossRef]
    [Google Scholar]
  19. Ranka R., Bormane A., Salmina K., Baumanis V. 2004; Identification of three clinically relevant Borrelia burgdorferi sensu lato genospecies by PCR – restriction fragment length polymorphism analysis of 16S-23S ribosomal DNA spacer amplicons. J Clin Microbiol 42:1444–1449 [CrossRef]
    [Google Scholar]
  20. Roberts W. C., Mullikin B. A., Lathigra R., Hanson M. S. 1998; Molecular analysis of sequence heterogeneity among genes encoding binding proteins A and B of Borrelia burgdorferi sensu lato. Infect Immun 66:5275–5285
    [Google Scholar]
  21. Rosa P. A., Schwan T. G. 1989; A specific and sensitive assay for the Lyme disease spirochete Borrelia burgdorferi using the polymerase chain reaction. J Infect Dis 160:1018–1029 [CrossRef]
    [Google Scholar]
  22. Schwan T. G., Schrumpf M. E., Karstens R. H., Clover J. R., Wong J., Daugherty M., Struthers M., Rosa P. A. 1993; Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi , isolated from ticks throughout California. J Clin Microbiol 31:3096–3108
    [Google Scholar]
  23. Schwartz J. J., Gazuman A., Schwartz I. 1992; rRNA gene organization in the Lyme disease spirochete, Borrelia burgdorferi . J Bacteriol 174:3757–3765
    [Google Scholar]
  24. Šitum M., Grahovac B., Markoviæ S., Lipozenèiæ J., Poje G., Dobriæ I., Marinoviæ B., Bolanèa-Bumber S., Mišiæ-Majerus L. 2000; Detection and genotyping of Borrelia burgdorferi sensu lato by polymerase chain reaction. Croat Med J 41:47–53
    [Google Scholar]
  25. Siuda K. 1991 Polish Ticks (Acari: Ixodida). Part I. General Problems. Parasitologic Monographs Warsaw: PWN;
    [Google Scholar]
  26. Skotarczak B., Wodecka B., Hermanowska-Szpakowicz T. 2002; Sensitivity of PCR method for detection of DNA of Borrelia burgdorferi sensu lato in different isolates. Przegl Epidemiol 56:73–79
    [Google Scholar]
  27. Skotarczak B., Adamska M., Sawczuk M., Maciejewska A., Wodecka B., Rymaszewska A. 2008; Coexistence of tick-borne pathogens in game animals and ticks in western Poland. Vet Med 53:668–675
    [Google Scholar]
  28. Sparagano O. A., Allsopp M. T., Mank R. A., Rijpkema S. G., Figueroa J. V., Jongejan F. 1999; Molecular detection of pathogen DNA in ticks ( Acari: Ixodidae ): a review. Exp Appl Acarol 23:929–960 [CrossRef]
    [Google Scholar]
  29. Stańczak J., Racewicz M., Kubica-Biernat B., Kruminis-Lozowska W., Dabrowski J., Adamczyk A., Markowska M. 1999; Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks ( Acari , Ixodidae ) in different Polish woodlands. Ann Agric Environ Med 6:127–132
    [Google Scholar]
  30. Wang G., van Dam A. P., Spanjaard L., Dankert J. 1998; Molecular typing of Borrelia burgdorferi sensu lato by randomly amplified polymorphic DNA fingerprinting analysis. J Clin Microbiol 36:768–776
    [Google Scholar]
  31. Wang G., van Dam A. P., Schwartz I., Dankert J. 1999; Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12:633–653
    [Google Scholar]
  32. Wang G., van Dam A., Dankert J. 2000; Two distinct ospA genes among Borrelia valaisiana strains. Res Microbiol 151:325–331 [CrossRef]
    [Google Scholar]
  33. Wodecka B. 2003; Detection of Borrelia burgdorferi sensu lato DNA in Ixodes ricinus ticks in north-western Poland. Ann Agric Environ Med 10:171–178
    [Google Scholar]
  34. Wodecka B. 2007; Significance of red deer ( Cervus elaphus ) in the ecology of Borrelia burgdorferi sensu lato. Wiad Parazytol 53:231–237
    [Google Scholar]
  35. Wodecka B., Skotarczak B. 2005; First isolation of Borrelia lusitaniae DNA from Ixodes ricinus ticks in Poland. Scand J Infect Dis 37:27–34 [CrossRef]
    [Google Scholar]
  36. Zhang Y., Takahashi Y., Fukunaga M. 1993; Organization of ribosomal RNA genes in Borrelia burgdorferi sensu lato isolated from Ixodes ovatus in Japan. Microbiol Immunol 37:909–913 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.013508-0
Loading
/content/journal/jmm/10.1099/jmm.0.013508-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error