Case report

A 71-year-old man with known alcoholic liver cirrhosis was admitted with painless jaundice, an increase in abdominal circumference, dark urine and acholic faeces of 7 days' duration. Laboratory evaluation indicated abnormal values of C-reactive protein (28 mg l\(^{-1}\)), total bilirubin (31.78 mg dl\(^{-1}\)) (normal 0.2–1.2), direct bilirubin (22.72 mg dl\(^{-1}\)) (normal <0.30), elevated aspartate aminotransferase (glutamic oxaloacetatic transaminase) [113 U l\(^{-1}\)] (normal 0–35), alanine aminotransferase (glutamic pyruvate transaminase) [107 U l\(^{-1}\)] (normal 0–45), carboxyembionic antigen [4.6 µg l\(^{-1}\)] (normal <3.4) and carbohydrate antigen [19–9 448.2 U ml\(^{-1}\)] (normal <27), \(\gamma\)-glutamyl transferase (standardization according to the IFCC) [104 U l\(^{-1}\)] (normal <55 U l\(^{-1}\)), alkaline phosphatase (standardization according to the IFCC) [194 U l\(^{-1}\)] (normal 40–129).

Abdominal sonography revealed a cirrhotic liver with enlarged intra- and extra-hepatic bile ducts (common bile duct 12 mm), gall bladder hydrops, and moderate ascites in the abdomen. Ascites yielded the growth of coagulase-negative staphylococci. The patient was treated with ceftriaxone, and due to hyperthyroidism with carbimazole and perchlorate.

Gastroscopy and endosonography revealed oesophageal varices grade II, ulcer duodenal and portal-hypertensive gastropathy. Furthermore, endosonography and sonography revealed a possible distal cholangio-carcinoma leading to biliary tract obstruction. A malignant stricture was detected in endoscopic retrograde cholangio-pancreatography (ERCP) and in cytology of a brush sample. Drainage of the biliary tract was performed by endoscopic placement of a plastic stent (60 mm, 10 French diameter) across the stricture.

As bilirubin values remained increased, suggesting early stent occlusion, the stent was replaced by ERCP (thus avoiding contaminations) 2 days later. The main channel and the flaps of the stent were occluded with sludge. Within 24 h the patient developed temperatures of 39 °C and became dyspnoeic, respiratory insufficient and acidotic suggestive of early sepsis leading to hypotension and acute renal failure. The patient was transferred to the intensive care unit intubated, and ventilated and continuous venovenous haemofiltration was started.

Bile and blood cultures were positive for *Candida glabrata*. Despite therapy with voriconazole and imipenem the patient died with clinical signs of sepsis 12 days after admission to hospital.

In the context of studying bacterial communities in biofilm formation, the patient’s stent, removed due to occlusion, was used in analysis by PCR. The biofilm was mechanically scraped off the inner surface of the stent. Total DNA was isolated using an EZ1 Biorobot from Qiagen and amplified in fungal 18–28S rDNA PCR with primers 18S-1508f (5\'-TCC GTA GGT GAA CCT GCG G-3\') and 28S-197r (5\'-TCC TCC GCT TAT TGA TAT GC-3\'), and in eubacterial

Mycoplasma salivarium detected in a microbial community with *Candida glabrata* in the biofilm of an occluded biliary stent

Correspondence

Birgit Henrich,1 Marcus Schmitt,2 Nora Bergmann,3 Klaus Zanger,4 Ralf Kubitz,2 Dieter Häussinger2 and Klaus Pfeffer1

1Institute of Medical Microbiology and Hospital Hygiene, Clinical Centre of Heinrich Heine University, Moorenstrasse 5, 40225 Duesseldorf, Germany
2Clinic of Gastroenterology, Hepatology and Infectiology, Clinical Centre of Heinrich Heine University, Moorenstrasse 5, 40225 Duesseldorf, Germany
3Centre of Dentistry, Clinical Centre of Heinrich Heine University, Moorenstrasse 5, 40225 Duesseldorf, Germany
4Institute of Anatomy II, Clinical Centre of Heinrich Heine University, Moorenstrasse 5, 40225 Duesseldorf, Germany

Mycoplasma salivarium, preferably an inhabitant of the human oral cavity, has rarely been found in other locations associated with disease. We describe here, for what is believed to be the first time, the detection of *M. salivarium*, together with *Candida glabrata*, in an occluded biliary stent of an icteric, cholestatic patient.

Abbreviations: BHQ, black-hole quencher; HEX, hexachlorofluorescein; IFCC, International Federation of Clinical Chemistry; PE, polyethylene.
16S rDNA PCR with primers 27f (5′-AGT TGA TCN TGG YTC AG-3′) and 519r (5′-GWA TTA CCG CRG CKG CTG-3′). Amplification products of the specimen were obtained from both PCRs. Sequencing of the 500 bp 28–18S amplicon followed by a subsequent similarity search using the web-based ‘Basic Local Alignment Search Tool’ (http://www.ncbi.nlm.nih.gov/BLAST) identified C. glabrata as a fungal pathogen. Analysis of the 16S amplicon showed 98% identity to 16S rDNA of Mycoplasma salivarium (accession no. M24661; bp 10–499), a cell-wall-less bacterium normally colonizing the oral cavity (Engel & Kenny, 1970). The presence of M. salivarium in the biofilm was confirmed by amplifying an additional region of the 16S rDNA (accession no. M24661; bp 771–1036) using a commercial, mycoplasma-specific PCR (VenorGeM; Minerva Biolabs) and quantified to 10^7 genome equivalents cm^{-2} stent surface by the use of a rpoB-based TaqMan PCR. This in-house PCR was carried out with the primers Msal-F (5′-CCG TCA AAT GAT TTC GAT TGC-3′) and Msal-R (5′-GAA CTG CTT GAC GGT GGA TGT T-3′) and probe Msal-T (5′-HEX-ATG ATG CTA ACC GTG CGT TGG GTG-BHQ1-3′) according to conditions described for Chlamydia trachomatis detection (Schaef er & Henrich, 2008). As mycoplasma culture had not been attempted from the stent specimen we verified the ability of M. salivarium to survive in bile. Therefore, M. salivarium NCTC 10113 was cultured in arginine medium supplemented with increasing amounts of bile (0 to 100%) from a cholestatic patient. Bile analysis revealed 0.73 mM taurocholate, 0.65 mM taurochenodeoxycholate, 3.2 mM glycocholate and 3.4 mM glycocheno-deoxycholate. After 2 weeks of cultivation M. salivarium had adapted to growth in bile and this strain showed a slightly different protein expression pattern than the original National Collection of Type Cultures strain. By employing scanning electron microscopy we were able to demonstrate colonization of polyethylene (PE) stents with M. salivarium and C. glabrata – even under bile conditions – (Fig. 1a) and micro-colony formation of M. salivarium on PE stents, a prerequisite for biofilm generation (Fig. 1b).

Biliary stenting via endoscopy is the most common palliative treatment for patients suffering from obstructive jaundice associated with malignant hepatobiliary tumours (Donelli et al., 2007). While in healthy individuals, bile flow and duodenal reflux are under the control of the musculus sphincter of Oddi, which should ensure the sterility of bile and prevent the ascension of microorganisms; loss of the antimicrobial barrier occurs when biliary stents are inserted, especially across the sphincter of Oddi (Sung et al., 1992). As a consequence, biliary stents are covered by a poly-microbial biofilm (Speer et al., 1988) often leading to occlusion by biliary sludge and bacterial biofilms, with the risk of subsequent complications such as hyperbilirubinaemia and sepsis. Knowledge of the colonizing microbial species is not comprehensive but would be useful in facilitating an effective antimicrobial therapy.

Within the last few years an increasing number of microorganisms have been identified in poly-microbial biofilms of biliary stents, with enterococci, Escherichia coli and Klebsiella spp. as the most common aerobic bacteria (Donelli et al., 2007), clostridia as the most common anaerobic bacteria (Leung et al., 2000) and Candida spp. as the most common fungi (Di Rosa et al., 1999). Although Mollicutes have already been shown to form biofilms (MCAuliffe et al., 2006), this is believed to be the first documented case of M. salivarium found in a biofilm of an occluded biliary stent. M. salivarium preferentially resides as a commensal in the oral cavity of humans (Kundsin & Praznik, 1967). In some cases it has been considered to participate in oral and peridontal infections (Engel & Kenny, 1970; Watanabe et al., 1986, 1998). Moreover, M. salivarium was characterized as a causative agent of a submasseteric abscess (Grisold et al., 2008), and of a chronic joint infection in a patient with hypogammaglobulinaemia (So et al., 1983). The presence of M. salivarium DNA in gastric tissue samples of chronic gastritis patients with significant pro-inflammatory responses suggests that this species is not simply a contaminant or facultative-pathogen of the oropharynx (Kwon et al., 2004). A patho-physiological role is supported by the findings that lipoproteins of M. salivarium were shown to induce MAPKs p38 and SAPK/JNK, and the transcriptional factors AP-1 and NF-kB in human fibroblasts (Nakamura et al., 2002), and to induce cell death of lymphocytes and monocytes (Into et al., 2002).

Difficulty in detecting mycoplasmas in routine diagnostic microbiology has complicated the characterization of the...
pathogenicity of these organisms. Cultivation of these small, self-replicating, cell-wall-less bacteria with reduced genomes requires complex media and may take days to weeks. In the era of molecular biology methods it has become easier to study bacterial communities independent of culture.

Using PCR, we were able to demonstrate for what is believed to be the first time a Mycoplasma species taking part in biofilm formation on an occluded biliary stent. Stent occlusion is the major complication with biliary stents and occurs in a significant number of cases (10–30%).

In 1998 Leung and co-workers postulated that there may be a synergistic effect in mixed bacterial infections in biofilm formation on biliary stents (Leung et al., 1998). In our case, routine diagnostics identified C. glabrata as the sole infectious agent. Although anti-mycotic-therapy was started, the patient died with clinical symptoms consistent with Candida sepsis.

The prevalence and pathogenicity of mycoplasmas in the biliary duct and on stents are still unknown, and should, based on this report, be characterized in future work with regard to the bacterial communities they take part in. The recommendation of Diebel et al. (1996) that patients with Candida isolated from biliary stents should be treated with both antifungal and broad-spectrum antimicrobial agents should be considered and possibly reformulated. If mycoplasmas are encountered as pathogens in the biliary duct it should be noted that these cell-wall-less bacteria are resistant to β-lactam antibiotics, and beside establishing a molecular-biological-based routine diagnostic for mycoplasma, a special antibiotic regime will be required that also includes tetracyclines.

References

