Fulminant necrotizing fasciitis due to *Vibrio parahaemolyticus*

Daniel Tena,1 Marta Arias,1 Bárbara Teresa Álvarez,2 Coro Mauleón,2 Mari Paz Jiménez2 and Julia Bisquert1

1Section of Microbiology, University Hospital of Guadalajara, Guadalajara, Spain
2Service of Geriatrics, University Hospital of Guadalajara, Guadalajara, Spain

Necrotizing soft-tissue infection due to *Vibrio parahaemolyticus* is unusual. We report a case of necrotizing fasciitis due to *V. parahaemolyticus* in a 92-year-old woman with a history of chronic renal failure, diabetes mellitus and malnutrition. Clinical evolution was fulminant and the patient died 6 h after admission. A review of all cases previously reported showed that the infection occurred in patients with underlying diseases through ingestion of raw oysters or inoculation via traumatic injury in marine environments. The mortality rate of all reviewed cases was 42.8 %. In conclusion, *V. parahaemolyticus* should be considered a possible causative agent of necrotizing fasciitis, especially in patients with underlying disease. Early diagnosis and prompt aggressive debridement associated with antibiotic therapy are essential in order to save the patient’s life, because clinical evolution can be fulminant and mortality rates are high.

Introduction

Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium that inhabits marine and estuarine environments, and causes three major syndromes of clinical illness: gastroenteritis (the most common syndrome), wound infections and septicaemia (Nair et al., 2007). Isolates from ill persons have traditionally been differentiated from (presumed non-pathogenic) isolates from environmental sources on the basis of haemolytic activity seen when these isolates are grown on special medium (Wagatsuma agar) (Morris, 2003). Infection is generally acquired through consumption of contaminated food or water or by direct invasion through wounds. There has been an increase in the incidence of *V. parahaemolyticus* infections since the mid-1990s. This increase has been noted in multiple countries and appears to be associated with the appearance of a new clonal group with pandemic potential (Daniels et al., 2000).

Wound infections due to *V. parahaemolyticus* are usually minor infections. However, necrotizing soft-tissue infections are unusual and other members of the family *Vibrionaceae* have been more frequently implicated. These infections can be life-threatening because of rapid invasion and destruction of the fascial planes accompanied by release of several cytotoxins (Chiang & Chuang, 2003). We report a case of necrotizing fasciitis due to *V. parahaemolyticus* which had a fulminant course and review the literature.

Case report

A 92-year-old woman with a history of chronic renal failure, diabetes mellitus and malnutrition was admitted to the hospital with a 24 h history of vomiting, food intolerance and diarrhoea. There was no history of trauma or exposure to seawater. No information about previously consumed food could be obtained. On admission, the patient appeared conscious with a bad general aspect. Physical findings included a body temperature of 35.8 °C, pulse rate of 115 min\(^{-1}\) and blood pressure of 82/53 mmHg. Examination of the patient’s right ankle revealed marked oedema with a large blister. The skin appeared painful, cold, erythematous and smelly. Pulses were weak and no open wounds were observed. The rest of the physical examination was unremarkable. Blood parameters revealed the following values: haemoglobin 11.6 g dl\(^{-1}\), haematocrit 33.5 %, white blood cells 16 300 mm\(^{-3}\) (neutrophils 93.9 %, lymphocytes 1.9 %, monocytes 4.2 %), platelets 221 000 mm\(^{-3}\), creatinine 2.87 mg dl\(^{-1}\) and creatine kinase 1140 IU l\(^{-1}\). Aspartate aminotransferase level, prothrombin and partial thromboplastin times were within normal limits. A sample from the blister and blood samples were taken for culture. Stool culture was not performed. Aggressive management with intravenous fluids and empiric treatment with ceftriaxone (2 g intravenously every 24 h) and clindamycin (600 mg intravenously every 8 h) was initiated. Gram stain of the blister aspirate demonstrated Gram-negative bacilli. The blister aspirate and blood cultures were found to be positive for a Gram-negative, oxidase-positive organism. Urease and indole reaction were positive. The strain was susceptible to O/129 agent (Oxoid). Initial identification with the Vitek II automated system (bioMérieux) and the API 20 NE system (bioMérieux; profile 7477445) yielded *V. parahaemolyticus*. The isolate was sent to the National
Reference Laboratory, where identification was further confirmed. An antibiotic susceptibility study was done using the N058 susceptibility card by Vitek (bioMérieux) according to CLSI recommendations (NCCLS, 2008). The strain was susceptible to amoxicillin/clavulanic acid (MIC $\leq 2\, \mu g\, ml^{-1}$), cefotaxime ($\leq 1\, \mu g\, ml^{-1}$), imipenem ($\leq 1\, \mu g\, ml^{-1}$), ciprofloxacin ($\leq 0.25\, \mu g\, ml^{-1}$), trimethoprim/sulfamethoxazole ($\leq 20\, \mu g\, ml^{-1}$) and gentamicin ($\leq 1\, \mu g\, ml^{-1}$). Skin lesions rapidly extended from the right ankle to the groin and also appeared on the left leg. Small vesicles developed on both legs progressing to necrosis. The patient suffered acute clinical deterioration that resulted in her death 6 h after admission. Her demise occurred very quickly and surgical treatment could not be performed.

Discussion

Necrotizing fasciitis is an uncommon soft tissue infection manifesting with a rapid course of inflammation and necrosis of skin, subcutaneous fat and fascia. The incidence has been reported to be 0.40 cases per 100,000 of the population (File et al., 1998). Necrotizing fasciitis has been divided into distinct groups on the basis of microbiological cultures (Elliott et al., 2000; Fontes et al., 2000). Type-I infections are polymicrobial infections that usually are caused by non-group-A streptococci, and other aerobic and anaerobic micro-organisms. Type-II infections are usually caused by *Streptococcus pyogenes* alone or with staphylococci. *Vibrio* species are a rare cause of necrotizing soft-tissue infections and the most common species implicated is *Vibrio vulnificus* (Tsai et al., 2009; Kuo et al., 2007). However, necrotizing fasciitis due to *V. parahaemolyticus* is unusual. To our knowledge, only seven cases have been previously reported (Roland, 1970; Howard et al., 1985; Howard & Lieb, 1988; Lim & Stebbings, 1999; Tsai et al., 2004; Ralph & Currie, 2007; Payinda, 2008). The characteristics of the patients in these cases and of our patient are summarized in Table 1. Sporadic cases caused by other species such as *Vibrio damsela*, *Vibrio alginolyticus* and *Vibrio cholerae* non-O1 have also been reported (Yuen et al., 1993; Gómez et al., 2003; Chang-Chien, 2006; Tsai et al., 2009).

In our study, seven of the eight patients (87.5 %) had underlying diseases and risk factors, including cirrhosis, haemochromatosis, diabetes, hepatitis C, treatment with prednisone and chronic renal failure. These have been associated with primary *Vibrio* wound infections (Howard et al., 1985; Howard & Lieb, 1988; Chiang & Chuang, 2003; Tsai et al., 2004; Kuo et al., 2007). The clinical course was fulminant in two patients. Several studies of severe infections caused by other vibrios such as *V. vulnificus* suggest that host factors play a large role in the fulminant nature of the disease (Borenstein & Kerdel, 2003; Gulig et al., 2005). In the other reported cases reviewed, the infection occurred through ingestion of raw oysters or inoculation via traumatic injury in marine environments. The source of infection was unknown in our case. Since our patient showed no open wounds, it is possible that ingestion of seafood served as a vehicle for the entry of the micro-organism with a subsequent extraintestinal spread causing necrotizing fasciitis. Unfortunately, information about food that she had eaten was unknown and stool samples were not taken for culture.

The mechanisms predisposing *V. parahaemolyticus* to cause necrotizing infections are unknown. These mechanisms have been studied in severe soft-tissue infections caused by other members of the family *Vibrionaceae*. *V. vulnificus* can produce many extracellular toxic factors that contribute to its virulence, including haemolysin, protease, lipase, cytolysin, hyaluronidase, mucinase, DNase and sulfatase (Zhang & Austin, 2005). *V. vulnificus* haemolysin disrupts erythrocytes and proteases enhance vascular permeability, which can result in haemorrhagic lesions that can eventually cause severe skin necrosis. In addition, proteases can facilitate oedema formation and bacterial invasion (Chakraborty et al., 1997). *V. cholerae* non-O1 produces many toxins such as El-Tor (HlyA) haemolysin which may contribute to the disease process (Tsai et al., 2009).

In our review, *V. parahaemolyticus* necrotizing fasciitis did not differ clinically from necrotizing soft-tissue infections caused by other members of the family *Vibrionaceae*. Symptoms typically begin anywhere from hours to several days later, consisting of swelling, erythema and often intense pain. The presence of oedema and bullae formation is another important diagnostic clue. However, bullae formation, fever and hypotension are late signs of infection (Kuo et al., 2007). Early diagnosis of necrotizing fasciitis is difficult and the disease can be mistakenly diagnosed as cellulitis, resulting in delayed management.

Vibrio necrotizing soft-tissue infections require emergency surgical care. Early recognition and prompt aggressive debridement is critical for survival and improves the rate of survival. Reported mortality rates are 25–38 % in those undergoing debridement and 66–100 % in those not undergoing debridement (Howard & Lieb, 1988; Howard & Bennett, 1993; Chiang & Chuang, 1992; Chiang & Chuang, 2003; Tsai et al., 2004). In our review, the mortality rate in the seven cases with available information was 42.8 % and the mortality rate of the surgical patients was 33.3 %. These findings are consistent with previous results for *Vibrio* necrotizing infections (Howard & Lieb, 1988; Howard & Bennett, 1993; Chiang et al., 1992; Chiang & Chuang, 2003; Tsai et al., 2004). In addition to aggressive surgical debridement, early presurgical antimicrobial treatment with broad-spectrum antibiotics is essential. However, antibiotics alone can be ineffective against the large soft-tissue bacterial inocula resulting from the invasive nature of these infections. In this way, our patient was treated with antibiotic therapy alone and surgical treatment could not be performed because clinical evolution was fulminant. The vibrios are susceptible to a wide range of antimicrobial agents. However, *V. parahaemolyticus* may have β-lacta-
Table 1. Characteristics of patients with necrotizing fasciitis due to *Vibrio parahaemolyticus*

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Reference</th>
<th>Age/sex*</th>
<th>Underlying disease</th>
<th>Clinical presentation</th>
<th>Physical examination</th>
<th>Location of contact</th>
<th>Mechanism of contact</th>
<th>Source of isolate</th>
<th>Antibiotic treatment†</th>
<th>Surgical treatment</th>
<th>Fulminant course</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Roland (1970)</td>
<td>40/M</td>
<td>None</td>
<td>Fever, vomiting, diarrhea</td>
<td>Hypotension, papular haemorrhagic rash</td>
<td>Left leg</td>
<td>Bathing in seawater</td>
<td>Vesicular exudate</td>
<td>Gentamicin</td>
<td>Amputation</td>
<td>No</td>
<td>Survival</td>
</tr>
<tr>
<td>2</td>
<td>Howard et al. (1985)</td>
<td>43/M</td>
<td>Cirrhosis, alcohol abuse</td>
<td>Fever, chills</td>
<td>Massive swelling, pain, erythema, pitting oedema, necrotic ulcer</td>
<td>Left leg</td>
<td>Ate raw oysters</td>
<td>Blood</td>
<td>Ampicillin, erythromycin</td>
<td>Surgical debridement</td>
<td>No</td>
<td>Survival</td>
</tr>
<tr>
<td>3</td>
<td>Howard & Lieb (1988)</td>
<td>63/M</td>
<td>Haemochromatosis, cirrhosis, diabetes</td>
<td>ND</td>
<td>ND</td>
<td>Left leg, right leg</td>
<td>Ate raw oysters</td>
<td>Blood</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>Lim & Stebbings (1999)</td>
<td>65/M</td>
<td>Chronic obstructive pulmonary disease</td>
<td>Fever, chills</td>
<td>Hypotension, laceration, pain, erythema, swelling, fluctuation</td>
<td>Right arm</td>
<td>Cutting, contact with uncooked crabs</td>
<td>Blood</td>
<td>Ceftazidime + doxycycline</td>
<td>Surgical debridement</td>
<td>Yes</td>
<td>Survival</td>
</tr>
<tr>
<td>5</td>
<td>Tsai et al. (2004)</td>
<td>72/F</td>
<td>Diabetes mellitus, hepatitis C</td>
<td>Chills, general malaise</td>
<td>Hypotension, oedema, erythema, bullae</td>
<td>Left leg</td>
<td>Seawater</td>
<td>Wound</td>
<td>ND</td>
<td>Fasciotomy, above-the-knee amputation</td>
<td>No</td>
<td>Survival</td>
</tr>
<tr>
<td>6</td>
<td>Ralph & Currie (2007)</td>
<td>63/M</td>
<td>Diabetes, congestive cardiac failure, limb ulcer, chronic airways disease</td>
<td>Delirium, septic shock, acute renal failure, coffee-ground vomitus</td>
<td>Pain, swelling, erythema</td>
<td>Left leg</td>
<td>Fishing in seawater</td>
<td>Wound aspirate, tissue specimen</td>
<td>Meropenem + gentamicin + doxycycline</td>
<td>Surgical debridement</td>
<td>No</td>
<td>Death</td>
</tr>
<tr>
<td>7</td>
<td>Payinda (2008)</td>
<td>79/M</td>
<td>Atrial fibrillation, polymyalgia rheumatica, prednisone</td>
<td>Fever, nausea, vomiting, dizziness</td>
<td>Hypotension, pain, tachycardia, erythema, bullae</td>
<td>Right leg</td>
<td>Fishing in seawater</td>
<td>Bullae aspirate</td>
<td>Piperacillin/tazobactam + ciprofloxacin</td>
<td>Surgical debridement, fasciotomy</td>
<td>No</td>
<td>Death</td>
</tr>
<tr>
<td>8</td>
<td>Present report</td>
<td>92/F</td>
<td>Diabetes mellitus, chronic renal failure, malnutrition</td>
<td>Vomiting, food intolerance, diarrhea</td>
<td>Hypotension, pain, erythema, oedema, blister, vesicles</td>
<td>Right leg, left leg</td>
<td>Unknown</td>
<td>Blister aspirate, blood</td>
<td>Ceftriaxone + clindamycin</td>
<td>No</td>
<td>Yes</td>
<td>Death</td>
</tr>
</tbody>
</table>

ND, No data.

*M, Male; F, female.

†Antibiotic treatment after diagnosis of *Vibrio* infection.
mase activity (Ottaviani et al., 2001). Septicaemia and soft-
tissue infections caused by V. parahaemolyticus should be
treated similarly to V. vulnificus infections, with ceftazi-
dime and doxycycline or doxycycline in combination with
ciprofloxacin or an aminoglycoside (Daniels et al., 2000).
The patients in our review were treated with a wide range
of antibiotics and no conclusions could be obtained.

In conclusion, V. parahaemolyticus should be considered a
possible causative agent of necrotizing fasciitis, especially in
patients with underlying diseases. Early diagnosis and prompt
aggressive debridement associated with antibiotic therapy are
essential in order to save the patient’s life, because clinical
evolution can be fulminant and mortality rates are high.

References

compartment syndrome caused by non-O1 Vibrio cholerae. J Plast
Reconstr Aesthet Surg 59, 1381–1384.

clinical manifestations, pathogenesis and antimicrobial therapy.

Vibrio vulnificus infection in Taiwan: report of 28 cases and review of

Daniels, N. A., Ray, B., Easton, A., Marano, N., Kahn, E., McShan, A. L.,
Del Rosario, L., Baldwin, T., Kingsley, M. A. & other authors (2000).
Emergence of a new Vibrio parahaemolyticus serotype in raw oysters. A

Elliot, D., Kufera, J. A. & Myers, R. A. (2000). The microbiology of

necrotizing fasciitis. Diagnosing and treating the “flesh-eating

Necrotizing fasciitis due to Vibrio alginolyticus in an immunocompe-

Necrotizing soft-tissue infections caused by marine vibrios. Surgery
98, 126–130.

fasciitis caused by Vibrio vulnificus: epidemiology, clinical findings,

human pandemics and oysters on the half shell. Clin Infect Dis 37,
272–280.

Nair, G. B., Ramamurthy, T., Bhattacharya, S. K., Dutta, B.,
parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol

Testing: Eighteenth Informational Supplement, vol. 28, no. 1. Wayne,
PA: National Committee for Clinical Laboratory Standards.

Ottaviani, D., Bacchiocchi, I., Masini, L., Leon, F., Carraturo, A.,
of potentially pathogenic halophilic vibrios isolated from seafood. Int
J Antimicrob Agents 18, 135–140.

Payinda, G. (2008). Necrotizing fasciitis due to Vibrio parahaemoly-

parahaemolyticus necrotising fasciitis in fishermen visiting an

Roland, F. P. (1970). Leg gangrene and endotoxin shock due to Vibrio
parahaemolyticus – an infection acquired in New England coastal

Tsai, Y. H., Hsu, R. W. W., Huang, K. C., Chen, C. H., Cheng, C. C.,
as necrotizing fasciitis and sepsis. A series of thirteen cases. J Bone

Tsai, Y. H., Huang, T. J., Hsu, R. W. W., Weng, Y. J., Hsu, W. H., Huang,
primary sepsis caused by Vibrio vulnificus and Vibrio cholerae non-O1.
J Trauma 66, 899–905.

Microbiol 98, 1011–1019.