1887

Abstract

The prebiotic Bimuno is a mixture containing galactooligosaccharides (GOSs), produced by the galactosyltransferase activity of NCIMB 41171 using lactose as the substrate. Previous and studies demonstrating the efficacy of Bimuno in reducing serovar Typhimurium ( Typhimurium) colonization did not ascertain whether or not the protective effects could be attributed to the prebiotic component GOS. Here we wished to test the hypothesis that GOS, derived from Bimuno, may confer the direct anti-invasive and protective effects of Bimuno. In this study the efficacy of Bimuno, a basal solution of Bimuno without GOS [which contained glucose, galactose, lactose, maltodextrin and gum arabic in the same relative proportions (w/w) as they are found in Bimuno] and purified GOS to reduce Typhimurium adhesion and invasion was assessed using a series of and models. The novel use of three dimensionally cultured HT-29-16E cells to study prebiotics demonstrated that the presence of ∼5 mg Bimuno ml or ∼2.5 mg GOS ml significantly reduced the invasion of Typhimurium (SL1344nal) (<0.0001). Furthermore, ∼2.5 mg GOS ml significantly reduced the adherence of Typhimurium (SL1344nal) (<0.0001). It was demonstrated that cells produced using this system formed multi-layered aggregates of cells that displayed excellent formation of brush borders and tight junctions. In the murine ligated ileal gut loops, the presence of Bimuno or GOS prevented the adherence or invasion of Typhimurium to enterocytes, and thus reduced its associated pathology. This protection appeared to correlate with significant reductions in the neutral and acidic mucins detected in goblet cells, possibly as a consequence of stimulating the cells to secrete the mucin into the lumen. In all assays, Bimuno without GOS conferred no such protection, indicating that the basal solution confers no protective effects against Typhimurium. Collectively, the studies presented here clearly indicate that the protective effects conferred by Bimuno can be attributed to GOS.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.022780-0
2010-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/12/1428.html?itemId=/content/journal/jmm/10.1099/jmm.0.022780-0&mimeType=html&fmt=ahah

References

  1. Agunos A., Ibuki M., Yokomizo F., Mine Y. 2007; Effect of dietary β 1–4 mannobiose in the prevention of Salmonella enteritidis infection in broilers. Br Poult Sci 48:331–341 [CrossRef]
    [Google Scholar]
  2. Augeron C., Laboisse C. L. 1984; Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res 44:3961–3969
    [Google Scholar]
  3. Bailey J. S., Blankenship L. C., Cox N. A. 1991; Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult Sci 70:2433–2438 [CrossRef]
    [Google Scholar]
  4. Carvalho H. M., Teel L. D., Goping G., O'Brien A. D. 2005; A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli . Cell Microbiol 7:1771–1781 [CrossRef]
    [Google Scholar]
  5. Castanon J. I. R. 2007; History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86:2466–2471 [CrossRef]
    [Google Scholar]
  6. Dash A., Inman W., Hoffmaster K., Sevidal S., Kelly J., Obach R. S., Griffith L. G., Tannenbaum S. R. 2009; Liver tissue engineering in the evaluation of drug safety. Expert Opin Drug Metab Toxicol 5:1159–1174 [CrossRef]
    [Google Scholar]
  7. DEFRA 2008 Zoonoses Report United Kingdom 2008 pp 1–26 London: Department for Environment, Food and Rural Affairs; http://www.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/zoonoses/documents/report-2008.pdf
    [Google Scholar]
  8. Depeint F., Tzortzis G., Vulevic J., l'Anson K., Gibson G. R. 2008; Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am J Clin Nutr 87:785–791
    [Google Scholar]
  9. Fernandez F., Hinton M., Van Gils B. 2002; Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol 31:49–58 [CrossRef]
    [Google Scholar]
  10. Gibson G. R., Probert H. M., Van Loo J., Rastall R. A., Roberfroid M. B. 2004; Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275 [CrossRef]
    [Google Scholar]
  11. Girard F., Frankel G., Phillips A. D., Cooley W., Weyer U., Dugdale A. H. A., Woodward M. J., La Ragione R. M. 2008; Interaction of enterohemorrhagic Escherichia coli O157 : H7 with mouse intestinal mucosa. FEMS Microbiol Lett 283:196–202 [CrossRef]
    [Google Scholar]
  12. Guiney D. G., Lesnick M. 2005; Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin Immunol 114:248–255 [CrossRef]
    [Google Scholar]
  13. Höner zu Bentrup K., Ramamurthy R., Ott C. M., Emami K., Nelman-Gonzalez M., Wilson J. W., Richter E. G., Goodwin T. J., Alexander J. S. other authors 2006; Three-dimensional organotypic models of human colonic epithelium to study the early stages of enteric salmonellosis. Microbes Infect 8:1813–1825 [CrossRef]
    [Google Scholar]
  14. La Ragione R. M., Best A., Clifford D., Weyer U., Johnson L., Marshall R. N., Marshall J., Cooley W. A., Farrelly S. other authors 2006; Influence of colostrum deprivation and concurrent Cryptosporidium parvum infection on the colonization and persistence of Escherichia coli O157 : H7 in young lambs. J Med Microbiol 55:819–828 [CrossRef]
    [Google Scholar]
  15. Lesuffleur T., Roche F., Hill A. S., Lacasa M., Fox M., Swallow D. M., Zweibaum A., Real F. X. 1995; Characterization of a mucin cDNA clone isolated from HT-29 mucus-secreting cells. The 3′ end of MUC5AC?. J Biol Chem 270:13665–13673 [CrossRef]
    [Google Scholar]
  16. Meyerholz D. K., Stabel T. J., Ackermann M. R., Carlson S. A., Jones B. D., Pohlenz J. 2002; Early epithelial invasion by Salmonella enterica serovar Typhimurium DT104 in the swine ileum. Vet Pathol 39:712–720 [CrossRef]
    [Google Scholar]
  17. Naughton P. J., Mikkelsen L. L., Jensen B. B. 2001; Effects of nondigestible oligosaccharides on Salmonella enterica serovar Typhimurium and nonpathogenic Escherichia coli in the pig small intestine in vitro. Appl Environ Microbiol 67:3391–3395 [CrossRef]
    [Google Scholar]
  18. Nickerson C. A., Goodwin T. J., Terlonge J., Ott C. M., Buchanan K. L., Uicker W. C., Emami K., LeBlanc C. Y., Ramamurthy R. other authors 2001; Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 69:7106–7120 [CrossRef]
    [Google Scholar]
  19. Petersen A., Heegaard P. M. H., Pedersen A. L., Andersen J. B., Sørensen R. B., Frøkiaer H., Lahtinen S. J., Ouwehand A. C., Poulsen M., Licht T. R. 2009; Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol 9:245 [CrossRef]
    [Google Scholar]
  20. Satchithanandam S., Vargofcak-Apker M., Calvert R. J., Leeds A. R., Cassidy M. M. 1990; Alteration of gastrointestinal mucin by fiber feeding in rats. J Nutr 120:1179–1184
    [Google Scholar]
  21. Searle L. E. J., Best A., Nunez A., Salguero F. J., Johnson L., Weyer U., Dugdale A. H., Cooley W. A., Carter B. other authors 2009; A mixture containing galactooligosaccharide produced by the enzymic activity of Bifidobacterium bifidum , reduces Salmonella enterica serovar Typhimurium infection in mice. J Med Microbiol 58:37–48 [CrossRef]
    [Google Scholar]
  22. Shoaf K., Mulvey G. L., Armstrong G. D., Hutkins R. W. 2006; Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun 74:6920–6928 [CrossRef]
    [Google Scholar]
  23. Smith H. W., Hall S. 1967; Observations by the ligated intestinal segment and oral inoculation methods on Escherichia coli infections in pigs, calves, lambs and rabbits. J Pathol Bacteriol 93:499–529 [CrossRef]
    [Google Scholar]
  24. Spring P., Wenk C., Dawson K. A., Newman K. E. 2000; The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci 79:205–211 [CrossRef]
    [Google Scholar]
  25. Tzortzis G., Goulas A. K., Gee J. M., Gibson G. R. 2005a; A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J Nutr 135:1726–1731
    [Google Scholar]
  26. Tzortzis G., Goulas A. K., Gibson G. R. 2005b; Synthesis of prebiotic galactooligosaccharides using whole cells of a novel strain, Bifidobacterium bifidum NCIMB 41171. Appl Microbiol Biotechnol 68:412–416 [CrossRef]
    [Google Scholar]
  27. Wales A. D., Clifton-Hadley F. A., Cookson A. L., Dibb-Fuller M. P., La Ragione R. M., Pearson G. R., Woodward M. J. 2002; Production of attaching-effacing lesions in ligated large intestine loops of 6-month-old sheep by Escherichia coli O157 : H7. J Med Microbiol 51:755–763
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.022780-0
Loading
/content/journal/jmm/10.1099/jmm.0.022780-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error