Zoonotic transmission of *Streptococcus equi* subsp. *zooepidemicus* from a dog to a handler

Y. Abbott,¹ E. Acke,¹ S. Khan,² E. G. Muldoon,³ B. K. Markey,¹ M. Pinilla,¹ F. C. Leonard,¹ K. Steward⁴ and A. Waller⁴

¹Veterinary Sciences, Veterinary Sciences Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
²Beacon Hospital, Sandyford, Dublin 18, Ireland
³St James’s Hospital, James’s Street, Dublin 8, Ireland
⁴Centre for Preventive Medicine, Animal Health Trust, Newmarket, UK

This is, to the best of our knowledge, the first case report to describe the apparent transmission of *Streptococcus equi* subsp. *zooepidemicus* from an infected dog to a handler who subsequently developed severe systemic infection. Characterization of the haemolytic streptococci isolated from both the patient and the dog, by phenotypic and molecular analysis, confirmed the canine and human isolates were identical.

Introduction

Streptococcus equi subsp. *zooepidemicus* (*S. zooepidemicus*) belongs to the Lancefield group C along with *Streptococcus equi* subsp. *equi*, *Streptococcus dysgalactiae* and *Streptococcus dysgalactiae* subsp. *equisimilis* (*S. equisimilis*). It is a commensal organism found on the tonsils, upper respiratory tract, skin and urogenital tract of horses (Anzai et al., 2000; CFSPH, 2005), but is not considered part of the normal tonsillar flora in either dogs (Devriese et al., 1992) or man (Fox et al., 1993). An opportunistic pathogen, it is associated with respiratory infections and supplicative disease in many animal species, including horses, cows, pigs, sheep, monkeys, guinea pigs, mink and gerbils (Barnham et al., 1987; Chanter, 1997). In dogs, *S. zooepidemicus* has been associated with septicaemia, wound infections (Timoney, 2004) and with cases of acute fatal haemorrhagic streptococcal pneumonia (HSP) at dog kennels (BVA, 2008; Pesavento et al., 2008), and more recently in a household pet (Gibson & Richardson, 2008). An increased severity of disease was associated with the presence of *S. zooepidemicus* in a study of canine infectious respiratory disease (Chalker et al., 2003).

In humans, infections caused by *S. zooepidemicus* are a rare event, resulting in meningitis, bacteraemia, acute nephritis, septic arthritis, pneumonia, and in some cases, death of the patient (Barnham et al., 1987; Efstratiou, 1997; Thorley et al., 2007; Ural et al., 2003). In the majority of these cases, consumption of unpasteurized milk or direct contact with horses was considered the most likely source of infection.

Case report

A 1-year-old male Jack Russell terrier presented with a 9 month history of lower respiratory tract problems, pyrexia and bilateral mucopurulent nasal discharge. The dog lived on a farm, which provided short-term accommodation for horses. The dog had free access to all areas of the farm, including the horses and their environment. Clinical examination revealed bilateral mucopurulent nasal discharge, a marked tachypnoea (respiratory rate 80 breaths per min) and harsh lung sounds over both lung fields. The dog was pyrexic, with a rectal temperature of 39.7 °C. Radiographs revealed bilateral symmetrical consolidation of the lung fields. Nasal swabs were taken for routine culture and a transtracheal lavage was performed, with samples submitted for cytology and bacterial culture. In order to help stabilize the respiratory signs, treatment involving placement of a nasal catheter to provide oxygen therapy was provided. During this procedure, the dog sneezed over the handler, spreading mucous secretions into the handler’s eyes, nose and facial area. Saline was used to clean the handler’s face and rinse out the eyes. Blood samples from the dog revealed a white blood cell count of 2.6×10^9 cells l$^{-1}$ (normal range $6–17 \times 10^9$ cells l$^{-1}$), mature neutrophils at 19.54×10^9 cells l$^{-1}$ (normal range $3–11.5 \times 10^9$ cells l$^{-1}$) and monocytes at 2.38×10^9 cells l$^{-1}$ (normal range $0.2–1.3 \times 10^9$ cells l$^{-1}$). Intravenous fluid therapy was administered along with antibiotic therapy (20 mg intravenous amoxicillin/clavulanic acid kg$^{-1}$ every 8 h and 5 mg intravenous enrofloxacin kg$^{-1}$). Cytology on transtracheal lavage samples was consistent with marked suppurative pneumonia. The nasal swabs and transtracheal lavage samples yielded pure growth of a β-haemolytic streptococcus that was identified as *S. zooepidemicus*.

Abbreviations: BVA, British Veterinary Association; HSP, haemorrhagic streptococcal pneumonia; MLST, multilocus sequence typing; ST, sequence type.
Intravenous antibiotic treatment, fluid therapy and cou-
page/nebulization were continued until day 5 when the dog
was discharged with a 2 month course of oral amoxicillin/
clavulanic acid at 18.4 mg kg\(^{-1}\) to be administered twice
daily.

Six weeks after the initial presentation, the dog was
reassessed. There were no abnormalities on clinical
examination, thoracic radiographs revealed no abnormal-

ities, and complete blood count and serum biochemistry
were unremarkable. Nasal and oropharyngeal swab cultures
were negative and there has been no recurrence of the
clinical signs to date.

On day 2, the dog handler began to feel unwell,
experiencing symptoms of stiffness in the neck and chest
area, fever, headache and general malaise. On day 3 the
patient attended a general practitioner and was prescribed
penicillin for 5 days. Nasal and oropharyngeal swabs
were taken and submitted for culture. However, the patient’s
condition did not improve, and on day 8 the patient was
referred to hospital for further investigation. On admission,
the patient’s pulse rate was 67 beats per min and
temperature was 36.2 °C. Blood pressure was 85/45 mmHg
initially, which later recovered. \(O_2\) saturations were 97%
on room air. First and second heart sounds were audible,
without added sounds and no murmur. The patient’s chest
was clinically clear, with no crepitations and no rhonchi.
Palpation of the abdomen presented no tenderness and no
organomegaly. Conjunctivitis was evident, with neck
stiffness and headache. Blood results on admission were
as follows: 13.1 g haemoglobin \(dL^{-1}\) (normal range 13–17 g \(dL^{-1}\)), white cell count 6.6 \(\times\) \(10^9\) cells \(L^{-1}\) (normal range 4–
10 \(\times\) \(10^9\) cells \(L^{-1}\)), platelets 226 \(\times\) \(10^9\) cells \(L^{-1}\) (normal
range 150–350 \(\times\) \(10^9\) cells \(L^{-1}\)), 86 \(\mu\)mol creatinine \(L^{-1}\) (normal
range 44–80 \(\mu\)mol \(L^{-1}\)), 1.67 ng C reactive protein
\(L^{-1}\) (normal value <5 ng \(L^{-1}\)), 44 U \(\gamma\)-glutamyl transpep-
tidase \(L^{-1}\) (normal range 12–64 U \(L^{-1}\)), 129 U lactate
dehydrogenase \(L^{-1}\) (normal range 125–243 U \(L^{-1}\)) and the
erythrocyte sedimentation rate was 10 mm \(h^{-1}\) (normal
range 0–20 mm \(h^{-1}\)). A computed tomography brain scan
was performed and found to be normal, with no evidence
of raised intracranial pressure. A lumbar puncture was
performed and a cerebral spinal fluid sample was obtained.
Analysis demonstrated that no white cells were present, and
no bacteria were evident in the direct Gram-stain or
performed and a cerebral spinal fluid sample was obtained.
of raised intracranial pressure. A lumbar puncture was
performed and found to be normal, with no evidence
of any abnormalities on clinical examination, and was
perceived as being healthy by the owners. This investiga-
tion was approved by the University College Dublin
Human Research Ethics Committee.

Microbiological methods

All specimens were cultured directly onto blood agar (BA)
[Columbia blood agar base (Oxoid) supplemented with
5% defibrinated sheep blood] and then enriched in Todd–
Hewitt broth (Oxoid). Plates and broths were incubated
for 18 h at 37 °C. Broths were then subcultured onto BA
containing Staph/Strep selective supplement (Oxoid;
SR70E), which contains colistin and nalidixic acid, and
were incubated overnight at 37 °C. Colonies were identi-
fied as group C *Streptococcus* species by colony morpho-
logy, haemolysis, Gram-stain and catalase and
agglutination reaction with streptococcal grouping reagents
(Streptococcal Grouping kit; Oxoid). The group C
streptococci were identified to the species level using the
API Rapid ID 32 Strep kit (bioMérieux). Antimicrobial
susceptibility testing carried out according to the recom-
mandations of the Clinical and Laboratory Standards
Institute (CLSI, 2005) revealed all isolates to be sensitive to
the following antimicrobial agents: cefalotin, amoxicillin/
clavulanic acid, tetracycline, trimethoprim/sulfadiazine, enrofloxacin, marbofloxacin and penicillin G.

Comparison of the two canine and the human *S.
zooepidemicus* isolates, by PFGE (Leonard & Carroll,
1997) was carried out, with 40 U Smal and a restriction
time of 24 h. Previously isolated but unrelated clinical
equine strains, equine A, B and C, were also included for
comparison. The banding patterns revealed that the isolates
from the handler were indistinguishable, whilst the pattern
from the infected dog’s isolate had a one band difference to
these strains. The isolate from the asymptomatic dog
differed significantly from the infected dog and human
strains. These isolates were also dissimilar to the clinical
equine strains used for comparison (Fig. 1).

The isolates were further characterized using multilocus
sequence typing (MLST), as previously described (Webb et
al., 2008). The strains from the infected dog and human
were both sequence type (ST) 178, whilst the clinical
equine strains A, B and C, were ST-180, ST-5 and ST-39,
respectively, and the companion dog isolate was ST-173.
mild upper respiratory tract signs, pneumonia, septic
2005). Clinical presentations are variable, and may include
following ingestion of contaminated cheese (Sesso
et al. (Bradley et al. 1991). Mortality rates following infections
with S. zooepidemicus are twice as high as those associated
with cases of S. equisimilis (Bradley et al., 1991).

Reports describing human infections by S. zooepidemicus
appear as sporadic individual reports (Boucher et al., 2002;
Thorley et al., 2007) or as occasional reports of large
epidemic outbreaks affecting numerous individuals
following ingestion of contaminated cheese (Sesso et al.,
2005). Clinical presentations are variable, and may include
mild upper respiratory tract signs, pneumonia, septic
arthritis, septicaemia and meningitis (Barnham et al., 1987;
Ghoneim & Cooke, 1980; Downar et al., 2001). In the
majority of cases, the likely routes of transmission have
included close contact with an infected horse or the
drinking of unpasteurized milk (Efstratiou, 1997; Francis
et al., 1993; Low et al., 1980).

The dog involved in this case appears to have developed
chronic respiratory tract infection following acquisition of
this zoonotic pathogen, probably as a result of contact with
horses. Comparison of the isolates from the dog and the
handler by PFGE indicated that they were very similar,
differing by a single band, which might be related to the
acquisition or loss of a plasmid or bacteriophage, which
could be clarified on genome sequencing. Similar reports,
investigating transmission of S. zooepidemicus from other
animals to humans, have also used PFGE when comparing
strains (Downar et al., 2001; Jovanovic et al., 2008; Kuusi
et al., 2006). However, it is difficult to compare PFGE results
between these studies. The S. zooepidemicus MLST scheme
permits the identification of different alleles directly from
the nucleotide sequences of ~400–500 bp internal fragments
of seven housekeeping genes (Webb et al., 2008). The
scheme is fully portable and data can be readily compared
with those of previous studies through the use of an
electronic database (http://pubmlst.org/szooepidemicus/).
MLST confirmed that the canine and human isolates shared
an identical ST, ST-178. A strain sharing this ST was
previously isolated from a case of equine abortion in the
UK during 2003, but this ST appears unrelated to other
strains previously isolated from dogs (http://pubmlst.org/
szooepidemicus/), and to the isolates recovered from the
horses and the healthy companion dog in this study.

It therefore appears that transmission of this strain from the
affected dog to the handler occurred, and resulted in clinical
illness. Whilst none of the horses present on the farm at the
time of screening were found to be carriers of S. zooepidemicus,
based on clinical history, it is conceivable that the dog may have been infected many months
previously from a horse that subsequently left the farm or
resolved its infection. The asymptomatic carriage of a
different strain of S. zooepidemicus (ST-173) in a healthy
companion dog, resident on the same farm, suggests that
transmission from horses to dogs may commonly occur.
Interestingly, strains of ST-173 have also been isolated from
a severe outbreak of HSP in dogs in the USA during 2006
(Pesavento et al., 2008), and a single locus variant of ST-173,
ST-18, was recovered from four greyhounds affected in a UK
outbreak of HSP during 2008 (Webb et al., 2008), suggesting
that S. zooepidemicus strains of these related types may be
particularly adept at infecting dogs. The future analysis of
the genome sequences of these isolates may reveal the
genetic basis behind this apparent increased ability to infect
dogs. The equine isolates identified in this study shared STs
with other equine isolates previously listed in the MLST
database (http://pubmlst.org/szooepidemicus/). In light of
this report, the authors would advise animal handlers and
veterinary clinicians to wear appropriate protective equip-

Fig. 1. PFGE analysis of S. zooepidemicus isolates following macrorestriction of genomic DNA with Smal. M, DNA size marker (kb); 1, sample from infected dog; 2, human nasal sample; 3, sample from human throat; 4, equine A sample; 5, equine B sample; 6, equine C sample; 7, sample from companion dog.

Discussion

This is believed to be the first report to describe the
apparent transmission of S. zooepidemicus from an infected
dog to a human, demonstrating the communicability of
this zoonotic species and the possibility of acquiring
infection from dogs.

S. zooepidemicus has been reported as an opportunistic
pathogen associated with invasive infections in laboratory
and domestic animals (Francis et al., 1993). A commensal
organism in horses, it is also associated with respiratory tract
infections in foals and young horses (Chanter, 1997; Downar
et al., 2001) and with equine abortion (Giles et al., 1993). In
cattle, S. zooepidemicus has been described as an occasional
cause of mastitis (Edwards et al., 1988), and in dogs is
associated with respiratory conditions such as canine
infectious respiratory disease and HSP (Chalker et al.,
2003; Pesavento et al., 2008). It is not, however, normally
associated with chronic respiratory infection in dogs. Infection is uncommon in man (Francis et al., 1993) and S.
zoopidemicus accounts for less than 1% of all bacteraemias
(CFSPH, 2005), but has been described as the most virulent
of the Lancefield Group C streptococci that infect humans
(Chanter et al., 1997). MLST confirmed that the canine and human isolates shared
an identical ST, ST-178. A strain sharing this ST was
previously isolated from a case of equine abortion in the
UK during 2003, but this ST appears unrelated to other
strains previously isolated from dogs (http://pubmlst.org/
szooepidemicus/), and to the isolates recovered from the
horses and the healthy companion dog in this study.

It therefore appears that transmission of this strain from the
affected dog to the handler occurred, and resulted in clinical
illness. Whilst none of the horses present on the farm at the
time of screening were found to be carriers of S. zooepidemicus,
based on clinical history, it is conceivable that the dog may have been infected many months
previously from a horse that subsequently left the farm or
resolved its infection. The asymptomatic carriage of a
different strain of S. zooepidemicus (ST-173) in a healthy
companion dog, resident on the same farm, suggests that
transmission from horses to dogs may commonly occur.
Interestingly, strains of ST-173 have also been isolated from
a severe outbreak of HSP in dogs in the USA during 2006
(Pesavento et al., 2008), and a single locus variant of ST-173,
ST-18, was recovered from four greyhounds affected in a UK
outbreak of HSP during 2008 (Webb et al., 2008), suggesting
that S. zooepidemicus strains of these related types may be
particularly adept at infecting dogs. The future analysis of
the genome sequences of these isolates may reveal the
genetic basis behind this apparent increased ability to infect
dogs. The equine isolates identified in this study shared STs
with other equine isolates previously listed in the MLST
database (http://pubmlst.org/szooepidemicus/). In light of
this report, the authors would advise animal handlers and
veterinary clinicians to wear appropriate protective equip-
ment (safety glasses and face masks) when dealing with animals presenting with respiratory symptoms.

Acknowledgements

The authors wish to thank Dr Brendan Healy, Professor Seamus Fanning and Bernadette Leggett (University College Dublin) for their technical assistance.

References

Streptococcus equi subsp. zooepidemicus canine zoonosis

http://jmm.sgmjournals.org