IktA-encoded leukotoxin is not a universal virulence factor in invasive *Fusobacterium necrophorum* infections in animals and man

Fusobacterium necrophorum is a Gram-negative non-spore-forming anaerobic rod that is an important primary and secondary pathogen in humans and farm animals (Brazier, 2002; Narayanan et al., 2002). *F. necrophorum* is divided into two subspecies, *F. necrophorum* subsp. *necrophorum* and *F. necrophorum* subsp. *funduliforme*. The former is more frequently encountered in animal infections and is more virulent in a mouse model of infection than the latter, the main human pathogen (Brazier, 2002; Smith & Thornton, 1993).

The leukotoxin of *F. necrophorum* is considered to be of pre-eminent importance in the pathogenesis of invasive infections in animals and humans (Hagelskjaer Kristensen & Prag, 2000; Saginala et al., 1997). Tan et al. (1994) found the toxin in all of 22 invasive bovine isolates and Tadepalli et al. (2008) recently reported that all of four human clinical isolates studied carried the leukotoxin-encoding gene.

We report here a larger survey of the distribution of the leukotoxin-encoding gene of *F. necrophorum* in 100 invasive strains recovered from both humans and animals, including non-bovines. We examined consecutive isolates of *F. necrophorum* recovered from invasive infections in 43 humans and 57 animals, received for identification by the Anaerobe Reference Laboratory, Cardiff, UK, and the Veterinary Laboratories Agency, Winchester, UK, respectively. The species of animal, and the number of *F. necrophorum* subsp. *necrophorum* and *F. necrophorum* subsp. *funduliforme*, respectively, examined from each were: cow (5, 12); sheep (13, 13); pig (0, 1); alpaca (3, 2); giraffe (0, 2); antelope (0, 1); nyala (0, 1); red deer (0, 1); goat (0, 1); wallaby (0, 1). All 43 human strains were *F. necrophorum* subsp. *funduliforme*.

We investigated the occurrence of the gene employing real-time PCR with primers specific for the leukotoxin-encoding gene sequence (*lktA*). To exclude the possibility that variability within the leukotoxin-encoding gene may lead to false negatives, two *lktA* gene sequences (displaying 99.75% nucleotide sequence identity), GenBank database accession numbers AF312861 and DQ672338, from geographically distinct *F. necrophorum* isolates (USA and China), were used to design three PCR primer pairs (LT1, LT2 and LT3), targeting different regions of the coding sequence of the gene. The nucleotide sequences (5′→3′) and positions (according to LT gene sequence and accession number AF312861) of the primers were: LT1forward, GGA AAA CTC CAG AAT ATG ATC CAG AAG A (4656–4673); LT1reverse, CTA CCC ACG AAA CAG CTC CTC CCA CAG (5017–4991); LT2forward, ATC GGA GTA GTA GGT TCT GTT GGT GTT G (8689–8716); LT2reverse, GGC TGC TGC GAC TCC GAC GC (8886–8867); LT2probe, FAM–AAC CTG AAA TTA CAG ATG CAG AAT ATG ATC CGA AAG A (8822–8851) (FAM, 6-carboxytetramethylrhodamine); TAMRA, 6-carboxyfluorescein; LT3forward, ATC GGA GTA GTA GGT TCT GTT GGT GTT G (8689–8716); LT3reverse, CCC AAT CCA CCT TTT ACA GCA GCT CG (3977–3952); BLAST analysis (http://www.ncbi.nlm.nih.gov/BLAST/) to confirm the source as *F. necrophorum*. Fisher’s exact probability tests, one-sided *P* value, were performed, employing the computer package StatsDirect (www.statsdirect.com), to assess whether the frequency differences observed between animal and human isolates in terms of the presence or absence of the leukotoxin-encoding gene in the subspecies were statistically significant.

The PCR results for the LT1, LT2 and LT3 primer sets were identical. All three assays were positive for the *F. necrophorum* reference strains and negative for the *S. aureus* control. Nucleotide sequence analysis of the amplified PCR products from the three *F. necrophorum* reference strains were in accord with the anticipated results.

Nucleotide sequence analysis of the five human and five animal isolates revealed a remarkable level of conservation within the LT2 target region, displaying just a single nucleotide change in any one isolate (0.66% sequence divergence); this was similar to the

References

two lktA gene sequences, which displayed just 24 differences in the entire 9726 bp sequence. In conjunction with the identical results for all isolates with all three LT assays, this indicates that failure to detect the leukotoxin-encoding gene reflected the absence of the gene in these isolates rather than a high degree of genetic variability impairing successful amplification.

Overall, the lktA gene was detected in only a minority (47/100) strains studied, but there were marked differences by source and between the two subspecies of F. necrophorum. The gene was detected in a minority of human strains (14/43, 33 %) but in the majority of animal strains (33/57, 58 %), but only a minority of F. necrophorum subsp. funduliforme (20/24, 83 %), but only a minority of human strains carried the lktA gene indicates that it is not an appropriate target for molecular diagnosis of pharyngitis and other invasive infection in humans, for which the F. necrophorum rpoB gene appears more appropriate (Aliyu et al., 2005).

Hugo A. Ludlam,1 Nicola J. Milner,1 Jon S. Brazier,2 Ian H. Davies,3 Kevin Perry,4 Rosemary K. Marriott,1 Linda Donachie1 and Martin D. Curran1

1Health Protection Agency (East of England), Addenbrookes Hospital, Cambridge, UK
2Anaerobe Reference Laboratory, University Hospital of Wales, Cardiff, UK
3Veterinary Laboratories Agency, Shrewsbury, UK
4Veterinary Laboratories Agency, Winchester, UK

Correspondence: Hugo Ludlam (hugo.ludlam@addenbrookes.nhs.uk)

