Case Report

Gemella morbillorum: an underestimated aetiology of central nervous system infection?

Paolo Benedetti,1 Mario Rassu,2 Michele Branscombe,3 Armine Sefton3 and Giampietro Pellizzer1

1Unità Operativa di Malattie Infettive e Tropicali, Ospedale S. Bortolo, Viale F. Rodolfi 37, 36100 Vicenza, Italy
2Laboratorio di Microbiologia, Ospedale S. Bortolo, Viale F. Rodolfi 37, 36100 Vicenza, Italy
3Institute of Cell and Molecular Science, Centre for Infectious Disease, Barts and the London School of Medicine and Dentistry, London E1 2AT, UK

A case is reported of cerebellar abscess and diffuse cerebritis due to Gemella morbillorum. The clinical course was ‘biphasic’, developing with an acute meningeal infection followed shortly afterwards by suppuration in the cerebellar and cerebral parenchyma; this pattern seemed to suggest a latent survival of the aetiological agent, probably within the central nervous system (CNS), despite systemic antibiotic therapy. Based upon a review of cases so far described, infections of the CNS caused by G. morbillorum appear to be an emerging reality.

Introduction

Gemella morbillorum is a Gram-positive, catalase-negative, facultatively anaerobic, non-motile and non-spore-forming coccus, and can occur singly, in pairs and in short chains. It was first isolated in 1917 from the blood of a patient with measles (Tunnicliff, 1917). G. morbillorum was previously named Diplococcus morbillorum, Peptococcus morbillorum, Peptostreptococcus morbillorum and Streptococcus morbillorum. It was eventually transferred from the genus Streptococcus to the genus Gemella (also including Gemella haemolysans and several recently described organisms) in 1988 on the basis of its biomolecular features and physiological properties (Kipler-Balz & Schleifer, 1988). Noticeably, these bacteria are easily decolorized during Gram staining and may therefore appear to be Gram-variable and even Gram-negative and can sometimes appear as elongated cocci. G. morbillorum usually behaves as a commensal organism of the mucous membranes and is part of the normal flora of several surfaces, including that of the oropharynx and the gastrointestinal and female genital tracts. However, Gemella species are able to cause severe localized and generalized infections as opportunistic pathogens. They may also cause clinical disease more frequently than is presently recognized, because they are sometimes incorrectly identified or left unidentified. In particular, differentiation from viridans group streptococci may be difficult and require a sophisticated PCR-based approach (La Scola & Raoult, 1998; Woo et al., 2003).

The first reports on the role of microaerophilic streptococci as significant human pathogens which can cause intracranial suppuration, both in adults and in children, date from the 1980s (Ariza et al., 1986). Since then, reports of clinical infections due to G. morbillorum, especially cases of infective endocarditis (Al-Hujailan & Lagace-Wiens, 2007; Kofteridis et al., 2006; Akiyama et al., 2001), have continued; poor dental health, dental manipulation or dental surgery, colorectal disease or procedures, steroid therapy, diabetes mellitus and hepatorenal dysfunction have been recognized as predisposing factors for this (Lopez-Dupla et al., 1996). G. morbillorum has been identified as the aetiological agent even for cases of pericarditis (Condoluci et al., 1995), arthritis (Roche & Smyth, 2005), pleural empyema (Valipour et al., 2005), liver abscess (Hsu et al., 2007), peritonitis (Azap et al., 2005; Velayos Jiménez et al., 2008), pneumonia (Famularo et al., 2006), Ludwig’s angina complicated by mediastinitis (Sofianou et al., 2005), septic shock (Vasishtha et al., 1996), spondylodiscitis (Eisenberger et al., 1998) and soft tissue infection (Bachmeyer et al., 2005).

Recently, the ability of both viridans group streptococci and Gemella species to be important reservoirs of genes encoding resistance to macrolides and other antibiotics has been demonstrated. Such resistance can be easily transferred to other pathogens that share their habitat, such as Streptococcus pneumoniae and Streptococcus pyogenes, raising important therapeutic issues, particularly in cases of central nervous system (CNS) infections (Cerdà Zolezzi et al., 2004; Asensi et al., 1996).

As of 1 June 2009, to our knowledge 11 cases of CNS infection caused by G. morbillorum have been described in the literature (Garavelli, 1990; Debast et al., 1993; Asensi et al., 1996; Murray et al., 1998; Martínez Beneito et al., 2008).
We report here a fatal case of meningitis caused by this organism, complicated by multiple brain and cerebellar abscesses.

Case report

In November 2008, a 77-year-old Italian male presented at our Unit with overt clinical signs of acute meningitis (fever, severe headache and neck stiffness). His past medical history documented that he had had pulmonary tuberculosis at the age of 35; in 2002 he had been hospitalized for a pleural empyema caused by polymicrobial flora (*Serratia marcescens*, *Stenotrophomonas maltophilia* and meticillin-sensitive *Staphylococcus aureus*). Two recurrences of polymicrobial pleuritis were recorded thereafter. A tubercular aetiology of this was searched for but excluded by both repeated direct examination and culture of the pleural fluid and bronchoalveolar lavage for acid-fast bacilli. Six years later (June 2008), the patient was rehospitalized due to headache and high fever with spikes at 39 °C. He presented with overt signs of meningeal irritation and a lumbar puncture was performed after a cerebral CT scan, which was negative for focal lesions. The cerebrospinal fluid (CSF) obtained was purulent and the cerebral CT scan, which was negative for focal lesions. Upon observation (5 November 2008), he complained of a severe occipital headache and displayed a slight dizziness; neurological examination at that time was negative for signs of meningeal irritation but revealed bilateral dysmetria of vision and serious ataxia. Cerebral CT scanning was performed, which documented compression of the fourth ventricle by a hypodense mass, localized in the left cerebellar hemisphere and showing peripheral enhancement after contrast injection (Fig. 1). No signs of sinusitis and/or mastoiditis were documented by specific CT examination, and a chest X-ray did not reveal focal pulmonary lesions. Urine culture and repeated blood cultures were negative. Three days after hospital admission, the patient underwent neurosurgery for the evacuation of a gross cerebellar abscess, from which *G. morbillorum* was cultured; the biochemical identification was confirmed by 16S rRNA sequencing. The strain was fully sensitive to all agents tested including penicillin, ampicillin, cefotaxime, ceftriaxone, gentamicin, streptomycin, ciprofloxacin and vancomycin. The patient subsequently displayed a progressively worsening septic state complicated by frequent gastrointestinal haemorrhages, and died 2 weeks after neurosurgery despite antibiotic treatment with i.v. penicillin and cefotaxime. The autopsy documented, in addition to a cerebral abscess, multiple brain abscesses.

<table>
<thead>
<tr>
<th>Case</th>
<th>Reference</th>
<th>Clinical setting</th>
<th>Concomitant morbidity</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Garavelli (1990)</td>
<td>Meningitis</td>
<td>Not reported</td>
<td>Cure</td>
</tr>
<tr>
<td>2</td>
<td>Debast et al. (1993)</td>
<td>Leptomeningitis</td>
<td>Sinusitis maxillaris</td>
<td>Death</td>
</tr>
<tr>
<td>3</td>
<td>Asensi et al. (1996)</td>
<td>Brain abscess</td>
<td>Periodontitis, alcoholism</td>
<td>Cure</td>
</tr>
<tr>
<td>4</td>
<td>Murray et al. (1998)</td>
<td>Brain abscess, meningitis</td>
<td>Septic arthritis</td>
<td>Cure</td>
</tr>
<tr>
<td>5</td>
<td>Martinez Beneito et al. (2002)</td>
<td>Subdural empyema</td>
<td>Sinusitis</td>
<td>Cure</td>
</tr>
<tr>
<td>6</td>
<td>Messori et al. (2002)</td>
<td>Brain abscess</td>
<td>Sinusitis</td>
<td>Cure</td>
</tr>
<tr>
<td>7</td>
<td>Spagnoli et al. (2003)</td>
<td>Brain abscess</td>
<td>Dental abscess</td>
<td>Cure</td>
</tr>
<tr>
<td>8</td>
<td>Spagnoli et al. (2003)</td>
<td>Brain abscess</td>
<td>None</td>
<td>Cure</td>
</tr>
<tr>
<td>9</td>
<td>Liberto et al. (2006)</td>
<td>Brain abscess</td>
<td>Dental abscess, pleuritis</td>
<td>Cure</td>
</tr>
<tr>
<td>10</td>
<td>Lopes et al. (2007)</td>
<td>Brain abscess</td>
<td>Inter-atrial communication</td>
<td>Cure</td>
</tr>
<tr>
<td>12</td>
<td>This case</td>
<td>Meningitis, cerebellar abscess, multiple brain abscesses</td>
<td>None</td>
<td>Death</td>
</tr>
</tbody>
</table>
to the cerebellar focus, diffuse cerebritis with multiple micro-abscesses spread in the parenchyma. Histology revealed perivascular microglial infiltration with large haemorrhagic and necrotic areas (Fig. 2).

Discussion

The clinical course in this patient was ‘biphasic’, developing with an acute meningeal infection followed shortly afterwards by suppuration in the cerebral parenchyma. This pattern, which has already been noted previously (Murray et al., 1998), seems to suggest a latent survival of the aetiological agent, probably within the CNS, despite systemic antibiotic therapy. In fact, a focus of septic infection external to the CNS could not be demonstrated, on the basis of radiological examinations and of clinical and laboratory findings. In retrospect, had a developing brain abscess rather than meningitis been suspected during the first phase, a 3-week duration of antibiotic therapy would have been inadequate.

The pathogenesis of G. morbillorum infections has been rarely investigated. In a case of shunt nephritis (Nagashima...
et al., 2001), the organism was proven to act as a trigger for the production of autoantibodies to proteinase 3 (PR3-ANCA), which are widely recognized as able to induce small vessel vasculitides associated with focal necrotizing damage via the release of PR3 from neutrophils and monocytes, which leads to detachment and cytolysis of endothelial cells, probably through a mechanism of apoptosis (Yang et al., 1996). Another study (Ribeiro Sobrinho et al., 2002) documented an effect of downregulation of IL-12 and IFN-γ following the inoculation of Gemella strains isolated from patients with pulp necrosis into germ-free mice. These cytokines are well known to play a crucial role in the eradication of many different pathogens by stimulating cell-mediated immunity through an enhancement of the cytolytic activity of natural killer T cells (Del Vecchio et al., 2007). Even in an experimental model of abscess development in the rat brain, pyogenic bacteria have been shown to elicit pleiotropic effects on cells within the CNS by the production of proinflammatory cytokines. In fact, exposure of the CNS vasculature to IL-1β and TNF-α has led to increased adhesion and migration of inflammatory cells into the CNS, and overexpression of IL-6 has been proven to cause several detrimental conditions including reactive gliosis, neurodegeneration, and breakdown of the blood–brain barrier (Kielian & Hickey, 2000). Finally, members of the genus Gemella share with the viridans streptococci and other important mucosal pathogens the ability to produce specific IgA1 protease (Lomholt & Kilian, 2000), which enables bacteria to evade the adherence-inhibitory activity of secretory IgA in vitro and is assumed to constitute an important virulence determinant in bacterial meningitis (Kilian et al., 1996). All these mechanisms probably participate in determining the neuropathism of Gemella, particularly in the background of impaired immunity and/or predisposing factors for septic spread. In fact, it seems reasonable that, in the presence of an impaired mucosal immunity, the combined effect of both endothelial damage and downregulation of inflammatory response may result in an enhanced ability of Gemella to pierce the blood–brain barrier and invade the CNS. Infections of the CNS caused by G. morbillorum appear to be an emerging reality that is likely to be confirmed by future observations performed with accurate speciation and a renewed attention to the differentiation from viridans streptococci.

References

