Meticillin-heteroresistant Staphylococcus pasteuri from an apheresis platelet product

About 1 in 1000–2000 apheresis platelet units is contaminated by bacteria. The platelet products are stored in oxygen-permeable bags, at 20–24 °C, for up to 5 days before being transfused, to preserve cell survival and function. Unfortunately, this may also permit growth of bacteria and transmission of these to recipients. Coagulase-negative staphylococci, Staphylococcus aureus, z-haemolytic streptococci, diphtheroids, Propionibacterium acnes, Acinetobacter species, Escherichia coli, Serratia species, Klebsiella species, Enterobacter species, Providencia rettgeri and Yersinia enterocolitica are known to contaminate platelet units (Riedel et al., 2006; Savini et al., 2008). Though contaminating staphylococci generally exert β-lactam susceptibility (as they are mostly donors’ skin contaminants, not nosocomial isolates), meticillin resistance should always be excluded to avoid β-lactam failure when treating transfusion-related bacteraemias.

A Staphylococcus pasteuri strain, designated Staphylococcus pasteuri A, was isolated as a contaminant from an apheresis platelet unit from an adult first-time donor. Identification was obtained by 16S rRNA sequencing. Given that the screened unit had not yet been transfused, an aliquot from the apheresis bag was newly examined to exclude the possibility that contamination had occurred while inoculating the BacT/Alert bottles (bioMérieux BacT/Alert is the instrument which is used in our department to screen platelet products for bacterial contamination) (Riedel et al., 2006); interestingly, the same strain grew again. Antimicrobial susceptibilities were determined by bioMérieux Vitek2, and meticillin susceptibility was confirmed by a standard agar disc test (NCCLS, 2003). A 20 mm inhibition zone diameter was documented around the Oxoid meticillin disc, but two single colonies (Staphylococcus pasteuri B and C) were observed within the inhibition area after 48 h incubation. These were both subcultured and showed the same phenotypic features as Staphylococcus pasteuri A (typical yellowish staphylococcal colonies), but exerted full meticillin resistance; an MIC ≥ 0.5 mg l⁻¹ was documented by Vitek2, whereas an 8 mm diameter meticillin inhibition zone was obtained by carrying out a disc test (NCCLS, 2003). Meticillin resistance thus appeared to be heterogeneously expressed within the population studied, and the isolate was finally considered β-lactam-resistant. The documented susceptibility profile was as follows: resistant to penicillin (MIC ≥ 0.5 mg l⁻¹); heteroresistant to meticillin/oxacillin (MIC ≥ 0.5 mg l⁻¹); susceptible to erythromycin (MIC ≤ 0.25 mg l⁻¹), clindamycin (MIC ≤ 0.5 mg l⁻¹), ciprofloxacin (MIC ≤ 0.5 mg l⁻¹), cotrimoxazole (MIC ≤ 10 mg l⁻¹), teicoplanin (MIC 1 mg l⁻¹) and vancomycin (MIC 1 mg l⁻¹).

Heteroresistance means the existence of a mixed population of drug-sensitive and drug-resistant organisms in a clinical isolate; in a most stringent sense, it is an exclusively phenotypic manifestation within a genotypically homogeneous strain. Heteroresistance may be undetected if only automated susceptibility tests are performed or only standard agar methods are carried out. This may lead to antimicrobial failure due to in vivo overgrowth of mutant drug-resistant clones. Meticillin and vancomycin heteroresistance has been found in Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus simulans, Staphylococcus haemolyticus, Staphylococcus capitis, Staphylococcus auricularis and Staphylococcus warneri. Gardnerella vaginalis metronidazole heteroresistance, Acinetobacter baumanii carbapenem heteroresistance and Cryptococcus neoformans fluconazole heteroresistance have also been reported in the literature. This phenomenon has also been described in Enterococcus faecium, Streptococcus pneumoniae and Mycobacterium tuberculosis, but never in Staphylococcus pasteuri. The frequency of heteroresistance is known to be about one subclone in every 10⁵–10⁶ colonies, though this varies amongst different species. Heterogeneous resistance may represent a first step towards resistance, as it permits organisms to grow in the presence of an antibiotic, before the acquisition of resistance by the greater part of the microbial population (Falagas et al., 2008; Fournaras et al., 2005). Heteroresistance is known to be difficult to detect, and there are few clinical data concerning this topic. Also, heteroresistance may not be evident before 48 h incubation even if agar methods are used. Hence we would suggest that laboratories carefully screen bacterial organisms for heterogeneous resistance to antimicrobials in daily clinical practice. Though clinical antimicrobial failures due to undetected heteroresistance have been reported, the therapeutic implications of this phenomenon have to be clarified and further clinical and experimental data are required (Falagas et al., 2008).

Staphylococcus pasteuri is a coagulase-negative staphylococcus which contributes naturally to Italian sausage fermentation, and development of their typical colour and aroma (Jacumin et al., 2006). Also, Staphylococcus pasteuri is one of the few micro-organisms which have been cultured from the stratosphere (Wainwright et al., 2006). Concerning Staphylococcus pasteuri involvement in human disease, the organism has only recently been found to cause a proven bacteraemic episode in a leukaemia patient (Savini et al., 2009), whereas the clinical significance of the isolates recovered by Chesneau et al. (1993) remained doubtful. The occurrence of platelet unit contamination by this species, however, may make it gain importance as an agent...
of platelet-derived bacteremias in the coming years. Also, widespread use of molecular methods for bacterial identification based on rRNA sequencing will probably lead to an increase in the number of Staphylococcus pasteuri isolates recovered from blood products and clinical specimens, given that automated methods which are commonly used in routine practice may fail to recognize this species on the basis of the biochemical profile. There are many unanswered questions about Staphylococcus pasteuri. We presently know very little about its ecological niches and its ability to cause disease in animals and man and to acquire resistance determinants. Nevertheless, its capacity to exert β-lactam resistance is of concern. To the best of our knowledge, this is the second isolation of Staphylococcus pasteuri from a blood product (Savini et al., 2008). Our brief communication reports what we believe to be the first recovery of meticillin heteroresistance in the species discussed. This is thought to be due to the heterogeneous expression of the mecA gene within the bacterial population, and this could lead to in vivo selection of fully β-lactam-resistant mutant clones if a transfusion-related bacteremia occurred.

Vincenzo Savini,1 Azaira Bianco,1 Chiara Catavitello,1 Andrea Balbinot,1 Arianna Pompliolo,2 Raffaele Piccolomini,2 Giovanni Di Bonaventura,2 Antonio Iacone3 and Domenico D’Antonio1

1Clinical Microbiology and Virology Unit, Department of Transfusion Medicine, ‘Spirito Santo’ Hospital, Pescara, Italy
2Clinical Microbiology, Aging Research Center (CeSI), and Department of Biomedical Sciences, ‘Gabriele d’Annunzio’ University of Chieti-Pescara, Italy
3Department of Transfusion Medicine, ‘Spirito Santo’ Hospital, Pescara, Italy

Correspondence: Vincenzo Savini (vincsavi@yahoo.it)


