Case Report

Anaerobiospirillum succiniciproducens bacteraemia in a patient with acute lymphoblastic leukaemia

M. N. Fadzilah,1 L. J. Faizatul,1 M. S. Hasibah,1 I.-C. Sam,1 M. Kahar Bador,1 G. G. Gan2 and S. AbuBakar1

1Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
2Department of Medicine, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

A 17-year-old man with acute lymphoblastic leukaemia had fever and diarrhoea during a febrile neutropenic episode. A spiral-shaped, Gram-negative anaerobic bacterium was isolated from blood, and confirmed as Anaerobiospirillum succiniciproducens by 16S rRNA sequencing. The patient responded to imipenem.

Introduction

The species Anaerobiospirillum was described for the first time by Davis et al. (1976), and comprises a group of spiral-shaped, Gram-negative anaerobic bacteria. They are motile, with bipolar tufts of flagella, and are present in the faeces of healthy cats and dogs (Rossi et al., 2008). Anaerobiospirillum succiniciproducens has been reported as a rare cause of bacteraemia, particularly in immunocompromised hosts (Tee et al., 1998; Pienaar et al., 2003), and diarrhoeal illness (Malnick et al., 1990). As gastrointestinal symptoms are the most common accompanying symptoms of bacteraemia, the gastrointestinal tract is believed to be the portal of entry (McNeil et al., 1987). We describe a case of A. succiniciproducens bacteraemia in a 17-year-old Chinese man with acute lymphoblastic leukaemia.

Case report

The patient, who was on chemotherapy, presented with generalized weakness and an erythematous rash over his arms. His blood count showed pancytopenia, with a total white count of $<0.1 \times 10^9$ l$^{-1}$. On the third day of his admission, he developed a fever of 38.8 °C and diarrhoea, and was empirically treated with piperacillin–tazobactam. Three sets of blood cultures (BACTEC 9240; Becton Dickinson), but no stool sample, were collected.

A spiral-shaped, Gram-negative bacillus was grown from a single anaerobic bottle, drawn from the white lumen of an intravascular catheter (Fig. 1). The isolate only grew after 48 h under anaerobic conditions at 37 °C on 5% sheep blood agar and fastidious anaerobic agar (Oxoid). Colonies were translucent and non-haemolytic, with a feathery swarming appearance. There was no growth on Skirrow supplemented plates (Oxoid) incubated under microaerophilic conditions for Campylobacter. Antibiotic susceptibility testing of anaerobes is not routinely performed in our laboratory due to lack of suitable media, but the metronidazole disc used to screen for anaerobes showed no zone of inhibition. The isolate was negative for oxidase and catalase. Rapid ID 32A (bioMérieux) identified the isolate as A. succiniciproducens.

To confirm the identity of the isolate, 16S rRNA sequencing was performed, as previously described (Misbah et al., 2005). Sequences were aligned and edited with Sequencher 4.0.5 (Gene Codes). The resulting consensus sequence of the partial 16S rRNA gene, containing 1427 nucleotides, was compared to other sequences in the GenBank database. The closest match was with the type strain A. succiniciproducens ATCC 29305T (99.8%), followed by two unidentified Anaerobiospirillum species isolated from dogs (96.3%) and Anaerobiospirillum thomasii (92.6%). The A. succiniciproducens sequence from this study has been deposited in GenBank under the accession number EU863654. The patient improved only

The GenBank/EMBL/DDBJ accession number for the 16S rRNA sequence of the A. succiniciproducens described is EU863654.

Fig. 1. Scanning electron micrograph of A. succiniciproducens showing a spiral shaped organism with polar multitrichous flagella.
after therapy was switched to imipenem and vancomycin. He was discharged after a total hospital stay of 13 days.

Discussion

Two species of *Anaerobiospirillum*, *A. succiniciproducens* and *A. thomasii*, are known to infect humans and are associated with diarrhoea (Malnick, 1997). *Anaerobiospirillum* species are part of the normal intestinal flora of cats and dogs, but apparently not of humans (Malnick et al., 1990; Rossi et al., 2008). It has been suggested that *Anaerobiospirillum* species are zoonotic bacteria transmitted to humans from animals, and that they are underdiagnosed because human stool samples are not routinely screened for these organisms (Malnick et al., 1990). The patient had no direct contact with animals, although he reported that his neighbour had a cat.

A. succiniciproducens is also rarely associated with bacteremia, with about 30 case reports from USA, Europe, Africa and Asia, suggesting a global distribution. Almost all reported bacteremia cases have occurred in patients with underlying medical conditions such as alcoholic liver disease, atherosclerosis, recent surgery and malignancies (McNeil et al., 1987; Goddard et al., 1998; Pienaar et al., 2003). Screening of the isolate in this case with a metronidazole disc suggested resistance to this drug. Other studies have found that *A. succiniciproducens* is often resistant to metronidazole and erythromycin (McNeil et al., 1987; Yuen et al., 1989; Tee et al., 1998; Pienaar et al., 2003), antibiotics that are empirically used for suspected infections with anaerobes and *Campylobacter* species, respectively. Thus, it is important for diagnostic laboratories to identify *A. succiniciproducens*, and especially to distinguish it from *Campylobacter* species, which have a similar Gram stain and colony appearance, but are oxidase and catalase positive. Isolation on Skirrow media is not specific for *Campylobacter* species, as some strains of *A. succiniciproducens* may grow (Malnick et al., 1990). Commercial identification systems using biochemical tests may help, and 16S rRNA sequencing is definitive.

The optimal treatment for *A. succiniciproducens* is not yet known, with some reported patients dying despite treatment with antibiotics to which the bacteria showed *in vitro* susceptibility, and some recovering without specific treatment (McNeil et al., 1987; Tee et al., 1998). Our patient did not respond to piperacillin–tazobactam, but did respond to imipenem, to which *A. succiniciproducens* has shown *in vitro* susceptibility in the few studies that have tested for it (Tee et al., 1998; Pienaar et al., 2003).

In conclusion, we have described what is believed to be the second Asian case of *A. succiniciproducens* bacteremia. Improved awareness and diagnosis of this rarely encountered organism will help further understanding of its epidemiology and treatment.

References

