Development and evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of *Campylobacter jejuni* and *Campylobacter coli*

Wataru Yamazaki,1 Masumi Taguchi,1 Masanori Ishibashi,1 Miyoshi Kitazato,2 Masafumi Nukina,3 Naoaki Misawa4 and Kiyoshi Inoue1

1Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan
2Yodogawa Christian Hospital, Osaka, Japan
3Microbiological Department, Kobe Institute of Health, Hyogo, Japan
4Department of Veterinary Public Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan

We developed a loop-mediated isothermal amplification (LAMP) assay for the rapid and simple detection of *Campylobacter jejuni* and *Campylobacter coli*. The assay provides a specific LAMP product for each of these two species. The assay correctly identified 65 *C. jejuni* and 45 *C. coli* strains, but not 75 non-*C. jejuni/coli* strains. The sensitivity of the LAMP assay for *C. jejuni* and *C. coli* in spiked human stool specimens was 5.6 × 10^3 cfu g^-1 (1.4 cfu per test tube) and 4.8 × 10^3 cfu g^-1 (1.2 cfu per test tube), respectively. When 90 stool specimens from patients with diarrhoea were tested by LAMP and direct plating, the LAMP results showed 81.3% sensitivity and 96.6% specificity compared to isolation of *C. jejuni* and *C. coli* by direct plating. Further, the LAMP assay required less than 2 h for detection of *C. jejuni* and *C. coli* in stool specimens. This LAMP assay is a rapid and simple tool for the detection of *C. jejuni* and *C. coli* and will be useful in facilitating the early diagnosis of food poisoning incidents caused by these organisms.

INTRODUCTION

Campylobacter is widely acknowledged as one of the most frequent causes of acute bacterial gastroenteritis in humans worldwide. *Campylobacter jejuni* and *Campylobacter coli* are the predominant cause of campylobacteriosis (Lawson et al., 1999; Nachamkin, 2003; On, 2005). *C. jejuni* and *C. coli* diarrhoea in humans is commonly diagnosed by isolating these pathogens from a stool specimen by a bacterial culture test. The test procedure includes the plating of stool onto selective agar medium and subsequent identification of suspected colonies on the agar medium. The bacterial culture tests require at least 4 days and are time-consuming and laborious due to the fastidious and slow growth of these species. A rapid, simple and practical assay for the identification of *C. jejuni* and *C. coli* has thus been sought.

Several PCR assays offer a more sophisticated approach to the identification of *Campylobacter* species (Linton et al., 1996; Yamazaki-Matsume et al., 2007). Although PCR assays provide more rapid identification of *C. jejuni* and *C. coli* than conventional biochemical-based assays, they require the use of electrophoresis to detect amplified products, which is time-consuming and tedious. Further, another real-time PCR assay recently developed for the rapid identification of *Campylobacter* species (Logan et al., 2001; Sails et al., 2003; Waage et al., 1999) is not routinely used due to the requirement for an expensive thermal cycler with a fluorescence detector.

Among other techniques, one promising candidate is a novel nucleic acid amplification method termed loop-mediated isothermal amplification (LAMP; Notomi et al., 2000). LAMP is based on the principle of autocycling strand displacement DNA synthesis performed by the Bst DNA polymerase large fragment for the detection of a specific DNA sequence with specific characteristics, which offers a number of advantages. First, all reactions can be carried out under isothermal conditions ranging from 60 to 65 °C. Second, its use of six primers recognizing eight distinct regions on the target nucleotides means that specificity is extremely high (Nagamine et al., 2002). Third, detection is simplified by visual judgment by the unaided eye without electrophoresis (Hara-Kudo et al., 2005; Song et al., 2005). Thus a LAMP assay is faster and easier to perform than PCR assays, as well as being more specific.
(Hara-Kudo et al., 2007). Furthermore, because the LAMP assay synthesizes a large amount of DNA, the products can be detected by simple turbidity. Thus, compared to PCR assays, expensive equipment is not necessary to give a high level of precision (Hara-Kudo et al., 2005). These features allow simple, rapid and cost-effective detection (Iwamoto et al., 2003; Hara-Kudo et al., 2005). Also, the increase in the turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized (Hara-Kudo et al., 2007). A commercial LAMP assay kit for detection of Campylobacter jejuni has been developed (Hara-Kudo et al., 2007, 2005; Minami et al., 2006; Ohtsuka et al., 2005), direct detection from clinical stool specimens has not been described.

Here, we describe a rapid and simple LAMP assay for the detection of Campylobacter jejuni and C. coli. We evaluated the efficacy of this LAMP assay in the direct detection of 90 human stool specimens obtained from food poisoning incidents.

METHODS

Bacterial strains. One hundred and eighty-five bacterial strains were used: these included 65 C. jejuni and 45 C. coli strains and an additional 45 Campylobacter and 30 non-Campylobacter strains that were used as reference strains and field isolates. Details of the 155 Campylobacter strains are as follows (a superscript T designates a type strain). Nineteen reference strains and field isolates. Details of the 155 culture collections: Campylobacter coli JCM 2529T (Japan Collection of Microorganisms); Campylobacter fetus subsp. fetus ATCC 27374T (American Type Culture Collection), GTC 08732 (Gifu Type Culture Collection, Gifu, Japan), GTC 08746, GTC 11236 and GTC 12267; Campylobacter fetus subsp. veneris ATCC 2528T; Campylobacter helveticus ATCC 51209T; Campylobacter hyointestinalis subsp. hyointestinalis ATCC 35217T; Campylobacter hyointestinalis subsp. lawsonii CCIPH-1; Campylobacter jejuni subsp. doylei LMG 8843T; Campylobacter jejuni subsp. jejuni LMG 8841T, ATCC 33291, ATCC 33292 and JCM 2013; Campylobacter lari JCM 2530T; Campylobacter mucosalis ATCC 43264T; Campylobacter spatum ATCC 35980T; and Campylobacter upsaliensis ATCC 43954T. One hundred and thirty-six Campylobacter isolates were obtained from clinical and environmental sources between 1988 and 2007 in Hyogo, Miyazaki and Osaka, Japan, (5) isolates were obtained from clinical and environmental sources between 1988 and 2007 in Hyogo, Miyazaki and Osaka, Japan, (4) isolates were obtained from simian stool specimens obtained from food poisoning incidents. Seven non-Campylobacter reference strains were obtained from international culture collections (Arcobacter butleri ATCC 49616T; Arcobacter cryaerophilus ATCC 43158T; Arcobacter skirrowii ATCC 51132T; Escherichia coli ATCC 25922 and ATCC 35218; Pseudomonas aeruginosa ATCC 27853; and Staphylococcus aureus subsp. aureus ATCC 25923). Twenty-three non-Campylobacter isolates were obtained from clinical sources (five Helicobacter pylori isolates; and one isolate each of Aeromonas hydrophila, Aeromonas sobria, Citrobacter freundii, Enterobacter cloacae, enterotoxigenic Escherichia coli O169:H41 heat-labile enterotoxin-positive, enterotoxigenic Escherichia coli O114:H18 heat-labile enterotoxin- and heat-stable enterotoxin-positive, Klebsiella pneumoniae, Morganella morganii, Plesiomonas shigelloides, Proteus mirabilis, Providencia alcalifaciens, Salmonella enterica serovar Enteritidis, Shigella flexneri 1a, Shigella sonnei, Vibrio cholerae O1 Ogawa cholera toxin-positive, Vibrio fluvialis, Vibrio mimicus and Vibrio parahaemolyticus O3:K6 thermostable direct haemolysin-positive).

Storage and culture conditions. All Campylobacter, Arcobacter and Helicobacter strains were stored in brucella broth containing 10 % (v/v) horse serum and 10 % (v/v) DMSO at −80 °C until use. They were grown on blood agar supplemented with 5 % (v/v) lysed horse blood and incubated for 2–3 days in a microaerobic atmosphere, except H. pylori, which was incubated for 7–10 days. Microaerobic conditions were generated with an AnaeroPack MicroAero (Mitsubishi Gas Chemical), which maintained an atmosphere of approximately 8 % O2, 7 % CO2 and 85 % N2. All strains were grown at 37 °C, except for Arcobacter cryaerophilus, which was grown at 30 °C. Other bacterial strains were stored in cooked meat broth at room temperature until use, and grown on blood agar and cultured overnight at 37 °C under aerobic conditions.

DNA extraction from culture. Bacterial DNA was extracted as previously described (Misawa et al., 2002; Yamazaki-Matsune et al., 2007). A single loopful of culture was inoculated in 50 μl NaOH (25 mmol l−1) in a 1.5 ml microcentrifuge tube using a disposable loop (1 mm diameter), and the cell mixture was heated at 100 °C for 10 min. After neutralization with 50 μl Tris/Cl buffer (80 mmol l−1, pH 7.5), cell debris was pelleted by centrifugation at 20 000 g for 5 min and the supernatant was used as template DNA for LAMP and multiplex PCR assays.

Identification of Campylobacter strains. Campylobacter strains were identified with biochemical-based and multiplex PCR assays according to a previously described method (Yamazaki-Matsune et al., 2007).

LAMP assay. The LAMP assay was performed with a Loopamp DNA amplification kit (Eiken Chemical). The final LAMP assay comprised 5 μl template DNA, 1 μl Bst DNA polymerase (Eiken Chemical), 1.6 μmol l−1 each of inner primers FIP and BIP, 0.2 μmol l−1 each of outer primers F3 and B3, and 0.8 μmol l−1 each of loop primers LoopF and LoopB, in 1× Reaction Mix (Eiken Chemical). The final volume was adjusted to 25 μl. All primers were produced by Hokkaido System Science, and were designed from the sequence data submitted to GenBank (AJ111168, J04144 for C. jejuni; and AAF01000003, CCO0367 for C. coli) with Primer Explorer V4 software (Fujitsu System Solutions). The sequences and locations of each primer are shown in Table 1 and Fig. 1. Primer FIP consisted of the F1 complementary sequence and the F2 sequence. Primer BIP consisted of the B1 direct sequence and the B2 complementary sequence. Primers B3 and LF consisted of the B3 and LF complementary sequences, respectively. The mixture was incubated at 65 °C for 60 min and then at 80 °C for 2 min to terminate the reaction in a Loopamp real-time turbidimeter (LA-320; Teramecs). LAMP amplification was detected as the turbidity at 650 nm using a LA-320 turbidimeter in real-time. The reaction was considered to be positive when the turbidity reached 0.1 within 60 min. Turbidity visible with the unaided eye was also considered to indicate a successful LAMP procedure.

Determination of the sensitivity of the LAMP assay. To determine the sensitivity of the LAMP assay for the detection of C. jejuni and C. coli in human stool specimens, known amounts of...
C. jejuni LMG 8841T and C. coli JCM 2529T were used. Cultures were incubated at 37 °C for 48 h in a microaerobic atmosphere. Serial 10-fold dilutions of the culture were prepared in PBS and 100 μl of each was spiked into 100 mg of a Campylobacter-negative stool specimen, and then each of the faecal homogenates was adjusted to a 10 % concentration with PBS. After mixing well, 100 μl of each was centrifuged for 5 min at 20 000 g in a 1.5 ml microcentrifuge tube. After removal of the supernatant, the pellets were resuspended in 100 μl NaOH (25 mmol l⁻¹), and the mixture was heated at 100 °C for 10 min. After neutralization with 100 μl Tris/HCl buffer (80 mmol l⁻¹, pH 7.5), debris was pelleted by centrifugation at 20 000 g and 4 °C for 5 min. Five microlitres of each supernatant was then used as template DNA for the LAMP assay. Spiked cells in a stool specimen were diluted 1 : 4000 in LAMP reaction tubes.

Table 1. LAMP primers used

<table>
<thead>
<tr>
<th>Target gene</th>
<th>GenBank accession no.</th>
<th>Primer</th>
<th>Sequence (5'→3')</th>
<th>Gene location (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cj0414*</td>
<td>AL111168</td>
<td>CJ-FIP</td>
<td>ACAGCACCGGCACCTATAGT-AGAAGCTTTTTAAAACATGGGC (Flc-F2)</td>
<td>95–76 (Flc), 25–46 (F2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJ-BIP</td>
<td>AGCCAGGCAGCAAACATTGAGATTGACCTGGTCTAAT</td>
<td>101–121 (B1), 181–157 (B2c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJ-F3</td>
<td>GCAAGCAGATACACCTAG-TCTCCTGCTTAAT</td>
<td>3–24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJ-B3</td>
<td>CTTCAGGCTGCTTGACCTGCTG</td>
<td>218–201</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJ-LF</td>
<td>CTAGCTGCTGACTACCAAAGACCAC</td>
<td>74–53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CJ-LB</td>
<td>CATCAAGCCTCAAGAGGAAA</td>
<td>124–143</td>
</tr>
<tr>
<td>CCO0367†</td>
<td>AAFL01000003</td>
<td>CC-FIP</td>
<td>AAGAGATAAACACCATGATCCCG-TCATGAATGCTTACCTTTCGAC (Flc-F2)</td>
<td>730–707 (Flc), 665–686 (F2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC-BIP</td>
<td>GCCGCAAGCAGCTTTAAAGTAAAGAGTCTGCTG</td>
<td>748–770 (B1), 810–790 (B2c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC-F3</td>
<td>TGGGAGGTGTTTTGATCT</td>
<td>641–658</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC-B3</td>
<td>AACTAAATCAACGGCATC</td>
<td>828–811</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC-LF</td>
<td>CCATAAGCAGCTTTAAGATCTGGT</td>
<td>706–687</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC-LB</td>
<td>CCACATAGCCTTATATAGTGA</td>
<td>771–789</td>
</tr>
</tbody>
</table>

*Presumed to encode an oxidoreductase from the sequence of AL111168, submitted to GenBank by Parkhill et al. (2000).
†Presumed to encode a gufA gene from the sequence of AAFL0100003, submitted to GenBank by Fouts et al. (2005).

C. jejuni LMG 8841T and C. coli JCM 2529T were used. Cultures were incubated at 37 °C for 48 h in a microaerobic atmosphere. Serial 10-fold dilutions of the culture were prepared in PBS and 100 μl of each was spiked into 100 mg of a Campylobacter-negative stool specimen, and then each of the faecal homogenates was adjusted to a 10 % concentration with PBS. After mixing well, 100 μl of each was centrifuged for 5 min at 20 000 g in a 1.5 ml microcentrifuge tube.

After removal of the supernatant, the pellets were resuspended in 100 μl NaOH (25 mmol l⁻¹), and the mixture was heated at 100 °C for 10 min. After neutralization with 100 μl Tris/HCl buffer (80 mmol l⁻¹, pH 7.5), debris was pelleted by centrifugation at 20 000 g and 4 °C for 5 min. Five microlitres of each supernatant was then used as template DNA for the LAMP assay. Spiked cells in a stool specimen were diluted 1:4000 in LAMP reaction tubes. The

![Fig. 1. Locations of the target sequences used as primers. The name and location of each target sequence as a primer in C. jejuni cj0414 and C. coli CCO0367 are shown in (a) and (b), respectively.](image-url)
sensitivity tests were conducted in triplicate, and the detection limits were defined as the last positive dilutions, with the sample considered positive if all three samples tested positive. In parallel, to enumerate the bacteria, 100 μl aliquots of appropriate dilutions were spread on blood agar and incubated at 37 °C in a microaerobic atmosphere. Colonies were counted at the dilution yielding 20–200 c.f.u. after 5 days, and c.f.u. (ml suspension)^{-1} was calculated.

Preparation of human stool specimens. A total of 90 stool specimens were obtained from 90 patients with diarrhoea derived from 22 different food poisoning incidents that occurred in Osaka Prefecture, Japan, between November 2006 and September 2007. The number of patients of individual food poisoning incidents ranged from 2 to 11. Cases were included for analysis if stool specimens were collected within 7 days from symptom onset. The specimens, all of which were diarrhoeal stool specimens, were transported to our laboratory from 13 local public health centres in Osaka Prefecture and subjected to microbiological examination for enteropathogens, including C. jejuni and C. coli, within 6 h of arrival at our laboratory. The causative agent of individual food poisoning incidents was determined according to the results of a microbiological examination. The incidents which led to the isolation of C. jejuni/coli were designated C. jejuni/coli food poisoning and the incidents which led to the isolation of non-C. jejuni/coli enteropathogens were designated non-C. jejuni/coli food poisoning. Of the 22 incidents, 13 were C. jejuni/coli food poisoning and 9 were non-C. jejuni/coli food poisoning caused by non-C. jejuni/coli enteropathogens. For the isolation of C. jejuni and C. coli, approximately one loopful of stool specimen was streaked onto Skirrow agar (Oxoid) and/or modified charcoal cefoperazone deoxycholate agar (mCCDA; Oxoid) using a disposable loop (10 mm diameter), and the plates were incubated at 42 °C for 48 h for identification. In parallel, for LAMP testing of the direct detection of C. jejuni and C. coli from faecal stool specimens, each stool specimen was adjusted to a 10% homogenate with PBS and stored at −20 °C until use, at which time 100 μl of each was used for preparation of DNA templates as described above, and the total volume was adjusted to 200 μl. Five microlitres of each was used for the LAMP assay. The LAMP assay was also carried out on the cultured C. jejuni and C. coli strains from the stool specimen to check the specificity of the LAMP reaction.

RESULTS AND DISCUSSION

Here, we report a novel and highly specific LAMP assay for the identification of C. jejuni and C. coli. This assay provides markedly more simple and rapid detection of C. jejuni/coli than conventional biochemical-based and PCR assays. Further, it can be applied to the direct detection of C. jejuni/coli in stool specimens.

A commercial LAMP assay kit for the detection of C. jejuni/coli is available (Furuhata et al., 2006). However, this kit is unable to discern between C. jejuni and C. coli, and the sequences of its primer sets are not public. We therefore developed a new LAMP assay for C. jejuni and C. coli. A C. jejuni primer set based on the putative oxidoreductase gene (Wang et al., 1992; Parkhill et al., 2000) was designed, on the basis of the excellent specificity of this gene for C. jejuni in our previous study (Yamazaki-Matsune et al., 2007). A C. coli primer set based on the putative gufA (heavy metal cations transporter; Asakura et al., 2007; Fouts et al., 2005) gene was designed since the sequence of this gene has proven to be highly conserved and specific for C. coli (Asakura et al., 2007).

LAMP products were obtained from all 65 C. jejuni and 45 C. coli strains (Table 2). No LAMP products were obtained from any of the 75 non-C. jejuni/coli strains. The sensitivity of the LAMP assay for C. jejuni LMG 8841T and C. coli JCM 2529T in spiked human stool specimens was found to be 5.6 × 10^3 c.f.u. g^{-1} (1.4 c.f.u. per test tube) and 4.8 × 10^3 c.f.u. g^{-1} (1.2 c.f.u. per test tube), respectively. The LAMP product showed an increase in turbidity (Fig. 2) and was visible as white turbidity. Sensitivities determined by the two methods were constantly matched with each other.

To evaluate the efficacy of LAMP assay testing of stool specimens for the diagnosis of C. jejuni/coli diarrhoea, 90 stool specimens from diarrhoea patients in food poisoning

<table>
<thead>
<tr>
<th>Strain</th>
<th>No. of strains tested</th>
<th>Positive number by LAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. jejuni</td>
<td>C. coli</td>
</tr>
<tr>
<td>C. jejuni subsp. jejuni</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>C. jejuni subsp. doylei</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C. coli</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>C. fetus subsp. fetus</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>C. fetus subsp. venerealis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C. hyointestinalis subsp. hyointestinalis</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>C. hyointestinalis subsp. lawsonii</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C. lari</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>C. upsaliensis</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>C. helveticus</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C. mucosalis</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>C. sputorum</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Non-Campylobacter bacteria</td>
<td>30</td>
<td>0</td>
</tr>
</tbody>
</table>
incidents were tested with the LAMP assay. The LAMP results were compared with the results of a direct plating culture test for *C. jejuni*/*coli*. The results are summarized in Table 3. *C. jejuni* and *C. coli* were isolated from 29 and 3 of the 90 stool specimens, respectively. Of the 32 *C. jejuni*/coli culture stool specimens (29 *C. jejuni* and 3 *C. coli*) positive by direct plating, 26 were positive by LAMP assay. Of these 26 LAMP-positive specimens, 21 were *C. jejuni*-positive and 5 were both *C. jejuni-* and *C. coli*-positive. Of the remaining 58 *C. jejuni*/coli culture stool specimens negative by direct plating, 2 and 56 stool specimens yielded *C. jejuni*-positive and *C. jejuni*/coli-negative results by LAMP assay, respectively. The LAMP assay therefore showed 81.3% sensitivity (26 of 32 specimens) and 96.6% specificity (56 of 58 specimens) compared with the isolation of *C. jejuni*/coli by the conventional direct plating culture test. Further, the LAMP assay correctly identified the 29 *C. jejuni* and 3 *C. coli* strains isolated from stool specimens. Of 32 *C. jejuni*/coli culture-positive specimens, 2 and 1 were co-isolated enterohaemorrhagic *Escherichia coli* O157 verotoxin 2-positive and *Norovirus*, respectively. Among the 58 *C. jejuni*/coli culture-negative specimens, 14, 6, 4 and 2 were isolated *Salmonella* spp., *Norovirus*, *Clostridium perfringens* enterotoxin A-positive and *V. parahaemolyticus* O3 : K6 thermostable direct haemolysin-positive, respectively. The bacterial culture test for the isolation and identification of *C. jejuni*/coli from the stool specimens required 4 days, with direct plating onto selective agars and sequential subculture. In contrast, the LAMP assay was markedly faster, requiring less than 2 h from the beginning of DNA extraction to final determination for the direct detection of human stool specimens.

Six culture-positive/LAMP-negative specimens were obtained as shown in Table 3. The cause of this discrepancy may have been the small number of *C. jejuni*/coli in the stool specimens, presumed lower than 4.8×10^3 c.f.u. g$^{-1}$, which was insufficient for LAMP detection. In a preliminary

![Fig. 2. Sensitivity test to detect *C. jejuni* and *C. coli* using a real-time turbidimeter. The curves from left to right indicate decreasing numbers of bacterial colonies $[14\times10^0$ c.f.u. per test tube in (a) and 12×10^0 c.f.u. per test tube in (b)]. (a) Detection of *C. jejuni*; (b) detection of *C. coli*.](image-url)
study, a LAMP assay was carried out on 10- and 100-fold diluted supernatants from the six culture-positive/LAMP-negative specimens to exclude the influence of inhibitory factors in the stool specimens (Hoshino et al., 1998; Persson & Olsen, 2005; Ramamurthy et al., 1993). The results were all negative, which may suggest that the number of C. jejuni/coli in the six stool specimens was small.

Of 58 specimens obtained from patients of C. jejuni/coli food poisoning incidents, 32, 2 and 24 specimens were culture-positive, culture-negative/LAMP-positive and culture-negative/LAMP-negative, respectively. All 58 specimens were potential carriers of C. jejuni/coli due to the ingestion of C. jejuni/coli-contaminated foods. However, C. jejuni/coli was not isolated from 26 of the 58 patients by direct plating culture, presumably due to any of the influence of a small ingestion amount, natural excretion, medication, rapid loss of cell viability in stools during transportation and storage, small number of cells in stool specimens and false-negative results by the overgrowth of normal flora on selective agars (Kulkarni et al., 2002; Persson & Olsen, 2005; Shirai et al., 1991; Sails et al., 2003). Of the 26 specimens, 2 were culture-negative/C. jejuni LAMP-positive. The remaining 24 specimens, as well as 32 control specimens obtained from patients of non-C. jejuni/coli food poisoning incidents and unrelated to C. jejuni/coli, were culture-negative/LAMP-negative. The cause of this discrepancy was thus presumed not to be false-positives but rather the detection of bacteria in stool specimens that were sufficiently stressed to resist conventional culture under standard conditions or false-negative results due to the overgrowth of normal flora contained in stool specimens (Kulkarni et al., 2002; Persson & Olsen, 2005; Shirai et al., 1991; Sails et al., 2003) on selective agars. These results may suggest that the LAMP assay could detect the specific sequences of C. jejuni even when C. jejuni was sufficiently stressed to resist conventional culture, but with the chromosomal DNA released by autolysis or the overgrowth of normal flora inhibiting separation of C. jejuni on selective agars. Further work is needed to confirm this hypothesis.

As shown in Table 3, the three C. coli and two C. jejuni culture-positive specimens were both C. coli and C. jejuni LAMP-positive. The cause of this discrepancy is probably the small number (n=2) of subcultures from a selective agar. As these five specimens were collected from three C. coli culture-positive/C. jejuni culture-negative and two C. jejuni culture-positive/C. coli culture-negative patients, these five patients were actually suspected of having mixed infection with C. jejuni and C. coli. Our assay may reveal mixed infection cases without the need for tedious subculture, and thereby facilitate more accurate epidemiological investigation.

In a preliminary study, 1 ml 10% C. jejuni/coli culture-positive faecal homogenate was concentrated by centrifugation to improve the yield of template DNA. The specimen was prepared as described in Methods, and finally 10% faecal homogenate was concentrated 10-fold and 5 μl was used as the template DNA. The positive rate was, however, decreased, with only 23 of 32 (71.9%) specimens being positive; 1 of 6 culture-positive/LAMP-negative specimens became LAMP-positive, while 4 of 26 culture-positive/LAMP-positive specimens became LAMP-negative. A possible explanation for this discrepancy may be the influence of inhibitory factors in the stool specimen (Hoshino et al., 1998; Persson & Olsen, 2005; Ramamurthy et al., 1993), concerns over which were the rationale for our use of 10% faecal homogenate without concentration.

The frequent occurrence of food poisoning incidents caused by C. jejuni/coli, and in particular the recently identified possibility of cases of Guillain–Barré or Fisher syndrome caused by certain strains of C. jejuni (Takahashi et al., 2005), highlight the need for the rapid and accurate identification of these species. Further, the application of our LAMP assay in veterinary and environmental microbiology should

Table 3. Comparison of results for LAMP and direct plating of C. jejuni and C. coli from 90 stool specimens

<table>
<thead>
<tr>
<th>No. of specimens</th>
<th>Results of direct plating*</th>
<th>LAMP results*</th>
<th>Source of specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. jejuni C. coli</td>
<td>C. jejuni C. coli</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>21†</td>
<td>21/21 0/21</td>
<td>21/21 0/21</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>3</td>
<td>0/3 3/3</td>
<td>3/3 3/3</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>2</td>
<td>2/2 0/2</td>
<td>2/2 0/2</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>6</td>
<td>6/6 0/6</td>
<td>0/6 0/6</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>2</td>
<td>0/2 0/2</td>
<td>0/2 0/2</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>24‡</td>
<td>0/24 0/24</td>
<td>0/24 0/24</td>
<td>Patients with C. jejuni/coli food poisoning</td>
</tr>
<tr>
<td>32§</td>
<td>0/32 0/32</td>
<td>0/32 0/32</td>
<td>Patients with non-C. jejuni/coli food poisoning</td>
</tr>
</tbody>
</table>

*Number positive/number of specimens tested.
†Of 21 specimens, enterohaemorrhagic Escherichia coli O157 verotoxin 2-positive and Norovirus were co-isolated from 2 and 1, respectively.
‡Of 24 specimens, Norovirus and Salmonella spp. were isolated from 4 and 1, respectively.
§Of 32 specimens, Salmonella spp., Clostridium perfringens enterotoxin A-positive, Norovirus and Vibrio parahaemolyticus O3:K6 thermostable direct haemolysin-positive were isolated from 13, 4, 2 and 2, respectively.
facilitate a comprehensive approach to the control of human
C. jejuni/coli-associated gastroenteritis. Our LAMP assay is a
powerful tool for the rapid and simple identification of
C. jejuni and *C. coli* and will facilitate the early diagnosis
of food poisoning incidents caused by these organisms.

ACKNOWLEDGEMENTS

We appreciate the advice and expertise of Dr T. Yoda (Osaka
Prefectural Institute of Public Health, Osaka, Japan). In addition,
we would like to thank Dr Y. Morikawa (Morikawa Pediatric
Clinic, Osaka, Japan), Mr I. Yoneda and Ms K. Fukushima (Suiita
Municipal Hospital, Osaka, Japan) for providing *Campylobacter* isolates.
This work was supported, in part, by a grant-in-aid from the Daido Life
Welfare Foundation and a grant-in-aid from the Ministry of Health,
Labour and Welfare (H18-Shokuhin-Ippan-003).

REFERENCES

Asakura, M., Samosornsuk, W., Taguchi, M., Kobayashi, K., Misawa, N.,
Comparative analysis of cytotoxindestining toxin (*cdt*) genes among
Campylobacter jejuni, *C. coli* and *C. fetus* strains. *Microbiol Pathog* 42,
174–183.

Fouts, D. E., Morgenst, E. F., Mandrell, R. E., Miller, W. G., Rasko, D. A.,
Ravel, J., Brinkac, L. M., DeBoy, R. T., Parker, C. T. & other authors
(2005). Major structural differences and novel potential virulence
mechanisms from the genomes of multiple *Campylobacter* species.

Furuhata, K., Kakimoto, S., Momoda, T., Kozima, T., Ikedo, M. &
amplification (LAMP) method and conventional culture method for

mediated isothermal amplification for the rapid detection of

Hara-Kudo, Y., Nemoto, J., Ohitsuka, K., Segawa, Y., Takatori, K.,
toxin-producing *Escherichia coli* using loop-mediated isothermal

Hoshino, K., Yamashita, S., Mukhopadhyay, A. K., Chakraborty, S.,
Basu, A., Bhattacharya, S. K., Nair, G. B., Shimada, T. & Takeda, Y.

Shafi, M. S. (2002). Detection of campylobacter species: a comparison of

(1999). Large-scale survey of *Campylobacter* species in human
gastroenteritis by PCR and PCR-enzyme-linked immunosorbent

PCR of the genus *Campylobacter* and of five *Campylobacter* species

Rapid identification of *Campylobacter* spp. by melting peak analysis of

Minami, M., Ohita, M., Ohkura, T., Ando, T., Torii, K., Hasegawa, T. &
loop-mediated isothermal amplification method as a novel, rapid,

Development of a combined filtration-enrichment culture followed
by a one-step duplex PCR technique for the rapid detection of
Campylobacter jejuni and *C. coli* in human faecal samples. *J Med Microbiol* 51, 86–89.

Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K.,
of DNA. *Nucleic Acids Res* 28, E63 (i-vi).

Detection of *Salmonella enterica* in naturally contaminated liquid eggs
by loop-mediated isothermal amplification, and characterization of

identification of *Campylobacter* species. In *Campylobacter Molecular
and Cellular Biology*, pp. 13–42. Edited by J. M. Kletley & M. E.
Konkel. Wymondham, Norfolk: Horizon Bioscience.

Parkhill, J., Wren, B. W., Mungall, K., Kletley, J. M., Churcher, C.,
Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other
authors (2000). The genome sequence of the food-borne pathogen
Campylobacter jejuni reveals hypervariable sequences. *Nature* 403,
665–668.

Campylobacter coli and *Campylobacter jejuni* from pure cultures and

Ramamurthy, T., Pal, A., Bag, P. K., Bhattacharya, S. K., Nair, G. B.,
Kurozono, H., Yamasaki, S., Shirai, H., Takeda, T. & other authors
(1993). Detection of cholera toxin gene in stool specimens by
polymerase chain reaction: comparison with bead enzyme-linked
imunosorbent assay and culture method for laboratory diagnosis of

(2003). A real-time PCR assay for the detection of *Campylobacter jejuni* in

Shirai, H., Nishibuchi, M., Ramamurthy, T., Bhattacharya, S. K., Pal,
the cholera enterotoxin operon of *Vibrio cholerae*. *J Clin Microbiol* 29,
2517–2521.

Song, T., Toma, C., Nakasone, N. & Iwanaga, M. (2005). Sensitive and
r rapid detection of *Shigella* and enteroinvasive *Escherichia coli* by a

Epidemiology of *Campylobacter jejuni* isolated from patients with
Guillain-Barré and Fisher syndromes in Japan. *J Clin Microbiol* 43,
335–339.
