A case of severe pancreatitis complicated by
Raoultella planticola infection

M. S. Alves,1,2 L. W. Riley3 and B. M. Moreira2

1Departamento de Análises Clínicas, Faculdade de Farmácia e Bioquímica, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, MG 36036-330, Brazil
2Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco I, Cidade Universitária, Rio de Janeiro, RJ 21941-590, Brazil
3School of Public Health, University of California, Berkeley, 140 Warren Hall, Berkeley, CA 94720, USA

A 45-year-old male presented with severe pancreatitis. Two bacterial isolates obtained from peritoneal fluid and abdominal purulent secretion were identified to the species level by 15 biochemical tests and four supplementary tests as Raoultella planticola. Identification was confirmed by rpoB gene sequencing. R. planticola is difficult to identify in the clinical laboratory, and the clinical significance of this isolation remains uncharacterized. This is the first report of pancreatitis with a primary infection by R. planticola.

Case report

On 2 September 2003, a 45-year-old male patient was admitted to a small (80 beds) public general hospital in Juiz de Fora, Minas Gerais state, Brazil, with abdominal pain, diarrhoea and a 30-year history of alcoholism. After 10 days of treatment for a suspect pneumonia and no invasive procedures, abdominal symptoms persisted and the patient was transferred to Hospital Universitário de Universidade Federal de Juiz de Fora on 12 September 2003. On admission, he had abdominal pain, vomiting, diarrhoea and fever. Chest X-ray and an abdominal CT scan revealed a small left pleural effusion and two abdominal fluid collections. Ciprofloxacin and metronidazole were started. On September 16, the patient underwent an exploratory laparotomy. Pancreatitis with a retroperitoneal abscess was diagnosed, with inflammation of pancreatic body and tail. A Gram-negative bacterial isolate was obtained as pure culture from the peritoneal fluid collected before surgery (isolate K111) and from abdominal pyogenic secretion (isolate K112). Both bacterial isolates were part of a surveillance study for characterization of klebsiellae infections. Both bacterial isolates were identified as K. oxytoca in the original clinical laboratory by non-automated biochemical tests. Isolates were re-evaluated in 15 biochemical tests for members of the Enterobacteriaceae (Farmer et al., 1985), and four supplementary tests (Drancourt et al., 2001; Farmer et al., 1985; Farmer et al., 1985; Farmer et al., 1985).
Monnet & Freney, 1994). Both isolates formed typical red colonies indicating fermentation of lactose and acid production on MacConkey agar; were oxidase- and Voges-Proskauer-negative, did not produce \(\text{H}_2\text{S} \), and did not utilize arginine or phenylalanine; fermented glucose; utilized citrate, lysine, malonate and \(\text{L} \)-sorbose, and were urease- and methyl red positive; and were non-motile. Isolates were positive for indole production, histamine assimilation and growth at 10 °C, and did not utilize ornithine or \(\text{D} \)-melezitose, and were identified as \(R. \text{planticola} \). Biochemical identification was confirmed by \(rpoB \) gene sequencing as described by Drancourt et al. (2001). The two \(R. \text{planticola} \) isolates exhibited 98% \(rpoB \) gene sequence similarity to known \(R. \text{planticola} \) strains, including the type strain \(R. \text{planticola} \) ATCC 33531\(^T \). By disc diffusion (Clinical and Laboratory Standards Institute, 2005), isolates were resistant to ampicillin and susceptible to amikacin, amoxicillin–clavulanate, aztreonam, cefepime, cefotaxime, cefoxitin, ceftazidime, cefalothin, ciprofloxacin, gentamicin, imipenem and trimethoprim–sulfamethoxazole, and did not exhibit extended-spectrum \(\beta \)-lactamase production. A dendrogram of ERIC-PCR profiles (Pellegrino et al., 2002) obtained with GelComparII, version 3.5 (Applied Maths), compared by the Dice index and the unweighted pair group method with arithmetic averages (UPGMA) is shown in Fig. 1. The two isolates had identical banding profiles.

Discussion

The genus \(\text{Klebsiella} \) has been recently re-analysed regarding its phylogenetic structure. All studies performed to date have shown the taxonomic heterogeneity of this organism, and the new genus \(\text{Raoultella} \) has been proposed for some of these isolates. The isolation of \(R. \text{planticola} \) from human specimens has been reported as part of studies on various collections of isolates (Freney et al., 1984, 1986; Monnet & Freney, 1994). However, the clinical significance of this isolation remains uncharacterized. To date, only three case reports have described invasive diseases caused by this organism (Freney et al., 1984, 1986). In the present report, \(R. \text{planticola} \) was repeatedly isolated in pure culture from intra-abdominal pyogenic specimens. The patient had pancreatitis with an infection that occurred without any abdominal manipulation. However, it is likely that previous antimicrobial exposure for the treatment of a questionable pneumonia selected for this agent. \(R. \text{planticola} \), like other \(\text{Raoultella} \) species, carries a chromosomal \(\beta \)-lactamase that makes this agent naturally resistant to several antimicrobial agents.

\(R. \text{planticola} \) is difficult to identify in the clinical laboratory. Nevertheless, the correct identification of bacterial species is the most important measure to guide antimicrobial treatment and detect outbreaks.

Acknowledgements

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) of Brazil and Fogarty International Program in Global Infectious Diseases (TW006563) of the National Institute of Health. We are grateful to Maria de Lourdes Junqueira for storage of isolates.

References

Drancourt, M., Bollet, C., Carta, A. & Rousselier, P. (2001). Phylogenetic analyses of \(\text{Klebsiella} \) species delineate \(\text{Klebsiella} \) and \(\text{Raoultella} \) spp. \(\text{gen. nov.} \), with description of \(\text{Raoultella ornithinolytica} \) comb. nov., \(\text{Raoultella terrigena} \) comb. nov. and \(\text{Raoultella planticola} \) comb. nov. \(\text{Int J Syst Evol Microbiol} \) 51, 925–932.

