Isolation of *Vibrio cholerae* O1 strains similar to pre-seventh pandemic El Tor strains during an outbreak of gastrointestinal disease in an island resort in Fiji

G. Balakrish Nair,¹ Ashrafus Safa,¹ N. A. Bhuiyan,¹ Suraia Nusrin,¹ Denise Murphy,² Carolyn Nicol,³ Mary Valcanis,⁴ Steven Iddings,⁵ Ili Kubuabola⁶ and Hassan Vally⁵,⁷

¹International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B) Dhaka, Bangladesh
²Public Health Microbiology, Queensland Health Scientific Services, Coopers Plains, Queensland, Australia
³Institute of Environmental Science and Research Limited (ESR), Kenepuru Science Centre, Poriru, New Zealand
⁴Microbiological Diagnostic Unit Public Health Laboratory (MDUPHL), Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
⁵World Health Organization (WHO), South Pacific Office, Suva, Fiji
⁶Fiji Centre for Communicable Disease Control, Mataika House, Suva, Fiji
⁷National Centre for Epidemiology and Population Health, ANU College of Medicine and Health Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia

Five strains of *Vibrio cholerae* O1, one each from an Australian and a New Zealand tourist with gastrointestinal illness returning from an island resort in Fiji and the remaining three from water sources located in the same resort, were extensively characterized. Conventional phenotypic traits that are used for biotyping of O1 *V. cholerae* categorized all five strains as belonging to the El Tor biotype. Genetic screening of 11 regions that are associated with virulence in *V. cholerae* showed variable results. The absence of genes comprising *Vibrio* seventh pandemic island-I (VSP-I) and VSP-II in all the strains indicated that these strains were very similar to the pre-seventh pandemic *V. cholerae* O1 El Tor strains. The *ctxAB* genes were absent in all strains whereas orfU and zot were present in four strains, indicating that the strains were non-toxigenic. Four strains carried a truncated CTX prophage. Although epidemiological and molecular studies suggested that these strains did not cause cholera amongst tourists at the resort, their similarity to pre-seventh pandemic strains, their prior association with gastrointestinal illness and their presence in the island resort setting warrant more attention.

**INTRODUCTION**

Cholera is an acute secretory diarrhoeal disease caused by toxigenic strains of *Vibrio cholerae* O1 or O139. Currently more than 200 serogroups of *V. cholerae* are recognized based on the somatic O antigen but only strains belonging to serogroups O1 and O139 are associated with epidemic and pandemic forms. The O1 serogroup is further classified into two biotypes, namely classical and El Tor. The two biotypes are distinguished from each other on the basis of their differences in several phenotypic properties (Kaper et al., 1995). More recent studies have identified genes unique to the classical and seventh pandemic El Tor strains (Dziejman et al., 2002).

Since 1817, cholera has spread into the world seven times in the form of pandemics. The first six of these pandemics originated from the Gangetic delta of Bengal whereas the ongoing seventh pandemic started from the Sulawesi island of Indonesia in 1961. Over the past four decades the seventh pandemic has spread into the Asian, African and American continents and continues to be endemic in these areas. There is firm evidence that the fifth and sixth pandemics of cholera were caused by the classical biotype while the seventh is
caused by the El Tor biotype. Between the sixth pandemic, which ended in 1923, and the seventh pandemic, which began in 1961, there was an intervening period of 38 years when cholera did not spread in the form of a pandemic but occurred as local outbreaks. Strains of *V. cholerae* O1 isolated during this period are referred to as the pre-seventh pandemic El Tor strains.

On 29 November 2004, the International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B), a World Health Organization (WHO) Collaborating Centre for Diarrhoeal Diseases Research and training in Bangladesh, was approached by WHO, South Pacific Office, to characterize a number of non-toxigenic strains of *V. cholerae* O1 originating from an island resort in Fiji in which there had been a large outbreak of gastrointestinal disease. The reason for this request was the recognition that non-toxigenic *V. cholerae* O1 may have pathogenic potential for humans and there is some correlation between the presence of non-toxigenic *Vibrio* in the environment and cholera outbreaks. The extensive characterization of the non-toxigenic *V. cholerae* O1 El Tor strains indicated that these strains were unusual and very similar to the pre-seventh pandemic strains.

**METHODS**

**Bacterial strains.** Five strains of *V. cholerae* O1 were received by the Enteric Microbiology Unit of ICDDR,B: one (ER98-5538) from Auckland, New Zealand; three [W2796A(5), W2796C(1) and W2796C(5)] from Queensland, Australia; and one (V3MDU) from Melbourne, Australia. *V. cholerae* O1 strain 569B of the classical biotype isolated in 1948 in India and the whole genome sequence O1 El Tor strain N16961 (Heidelberg et al., 2000) isolated in 1971 in Bangladesh were used as reference strains.

**Source of the strains.** Seven passengers had gastrointestinal symptoms while returning from a resort on Malololailai Island in Fiji by Air Pacific flights from Nadi to Melbourne on 20 and 21 August 2004. Three passengers had stool specimens examined and in two of these the presence of pathogens was indicated. *V. cholerae* O1 was recovered along with norovirus RNA from a stool sample of a 54-year-old female (V3MDU), whilst norovirus RNA was isolated from this woman’s partner, a 56-year-old male. As part of the subsequent outbreak investigation at the resort, a comprehensive environmental investigation was conducted, with detailed microbiological testing of samples. *V. cholerae* W2796C(1) and W2796C(5) were isolated from one of the tanks used to store water produced by desalinating plants for use by guests for washing purposes (not for drinking). A third isolate, W2796A(5), was obtained from a surface water pond at the resort which was not used as a water source. The above three strains were isolated by the Public Health Microbiology Laboratory, Queensland Health Scientific Services, Brisbane, Australia, where the samples collected at the resort in Fiji were packed and shipped in accordance with International Air Transport Association (IATA) requirements for air freighting. The New Zealand isolate of *V. cholerae* O1 (ER98-5538) was from a New Zealand male aged 28 years who also had a concurrent infection with *Salmonella enteritidis* phage type 23. These infections were detected in November 1998 on his return to New Zealand after he developed gastrointestinal symptoms whilst a guest at this same resort in Fiji.

**PCR and serogrouping.** The identity of these strains was first reconfirmed by *V. cholerae*-species-specific ompW PCR developed by Nandi et al. (2003). The serogroup of these strains was subsequently reconfirmed using polyvalent O1 and monovalent Inaba and Ogawa antisera and by a multiplex PCR targeted to identify genes encoding O1 (rboO1) and O139 (rboO139)-specific O biosynthetic genes and cholera toxin gene (ctxA) as described previously (Hoshino et al., 1998). PCR reagents and kits were obtained from either Perkin–Elmer or Invitrogen. The PCR products were analysed by electrophoresis in 1% agarose gels, stained with ethidium bromide, visualized under UV light, and recorded by using a gel documentation system (Gel Doc 2000; Bio-Rad). Amplicons were sized with reference to standard molecular mass markers.

**Biotyping.** All strains were tested for susceptibility to polymyxin B (50 U), chicken red cell agglutination (CCA) and sensitivity to group IV classical and group 5 El Tor phages as described in World Health Organization (1987). To complement the biotype characterization by genetic traits, PCR assays targeted to detect tcpA (classical and El Tor variant) (Keasler & Hall, 1993) and the rstR gene encoding the phase transcriptional regulator were performed using procedures described elsewhere (Davis et al., 1999; Kimsey et al., 1998; Nusrin et al., 2004).

**PCR-based genetic screening.** PCR assays were used to assay for 11 virulence-associated genes and/or gene clusters, namely VSP-I, VSP-II, MSHA pilin, RTX, RS1Φ, CTXΦ, toxin linked cryptic plasmid (tlc), *Vibrio* pathogenicity island-1 (VPI-1), a constituent gene of integron (intI4), hlyA and pilE, in the genome of the 7 *V. cholerae* isolates including classical and El Tor reference strains. Thirty-two sets of PCR primers were used and PCR conditions were described previously (Chow et al., 2001; O’Shea et al., 2004).

**RESULTS AND DISCUSSION**

Each of the five strains were positive for the species-specific ompW gene and were therefore confirmed as *V. cholerae*. Multiplex PCR showed that all strains harbour the rboO1 gene but were negative for the rboO139 gene, although one strain, W2796C(1), was rough. All five strains were of the El Tor biotype. They were resistant to polymyxin B (50 U), agglutinated chicken blood cells and were sensitive to El Tor phage 5, but were resistant to classical phage IV (Table 1). The serogroup and serotype of these strains using polyvalent and monovalent antisera are shown in Table 1. The genetic traits that are used for biotyping *V. cholerae* were, however, not informative since all the five strains were negative for tcpA and for rstR.

Given the interesting background of these strains of *V. cholerae* O1, we decided to extensively analyse several of the genetic regions associated with virulence in an attempt to understand the lineage and pathogenic significance of these strains. The eleven regions, namely TLC, CTXΦ, RS1Φ, RTX, Hly, MSHA, VSP-I, VSP-II, VPI-1, pilE and intI4, accounted for approximately 165 kb of the *V. cholerae* genome (Table 2). In the VPI-1 gene cluster the major virulence-associated genes, toxT and tcpA (Table 1), were negative in all the strains while acfB, which is another potential colonization factor in VPI-1, was positive. Previous studies have also shown the presence of VPI-1 in the sixth, seventh and pre-seventh pandemic strains (O’Shea et al., 2004). The MSHA gene cluster could be amplified by
mining serotype and biotype reference strains. In the classical all the test strains and in the sixth and seventh pandemic

Response of the test and reference strains of

Table 1. Response of the test and reference strains of *Vibrio cholerae* O1 to the phenotypic and genotypic tests for determining serotype and biotype

<table>
<thead>
<tr>
<th>Strain no.</th>
<th>Serogroup</th>
<th>Serotype</th>
<th>ompW</th>
<th>rfbO1</th>
<th>rfbO139</th>
<th>Phenotypic traits*</th>
<th>Genotypic traits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Polymyxin B (50 U)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phage IV (classical)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phage 5 (El Tor)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tcpA classical</td>
<td>tcpA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rstRI†</td>
<td>rstR2‡</td>
</tr>
</tbody>
</table>

ER98-5538         | O1        | Ogawa    | +    | +     | –       | + R R R S          | –               |
W2796A(5)         | O1        | Inaba    | +    | +     | –       | + R R R S          | –               |
W2796C(1)         | Rough     | Rough    | +    | +     | –       | + R R R S          | –               |
W2796C(5)         | O1        | Inaba    | +    | +     | –       | + R R R S          | –               |
V3MDU             | O1        | Inaba    | +    | –     | –       | + R R S            | –               |
Classical 569B    | O1        | Inaba    | +    | –     | –       | S S R              | +               |
El Tor N16961     | O1        | Inaba    | +    | –     | –       | R                  | +               |

*S*, Sensitive; R, resistant.
†rstRI, classical type.
‡rstR2, El Tor type.

PCR in all the test strains. MSHA, a type IV pilus, is expressed by strains of the El Tor biotype but is only rarely expressed by strains of the classical biotype (Jonson et al., 1991). Two other regions, *hlyA* and *pilE*, were also found in all the test strains and in the sixth and seventh pandemic reference strains. In the classical *V. cholerae* strain, there is a deletion of the *rtxC* gene in the RTX region, which encodes an acylation enzyme that activates the toxin (Lin et al., 1999). In a more recent study, Dziejman et al. (2002) reconfirmed the presence of *rtxC* only in the El Tor but not in the classical biotype strains. In this study, we tested for two genes of the RTX gene cluster, *rtxC* and *rtxA*; both were present in all the test strains thereby reaffirming the El Tor biotype status of these strains. From the extensive analysis, it was concluded that the five test strains belonged to the El Tor biotype. Recently, Dziejman et al. (2002) identified genes that are unique to El Tor strains of the seventh pandemic and termed them VSP-I and VSP-II. PCR examination for VSP-I and -II revealed that both the clusters were absent in all the test strains except for the presence of one ORF each, namely ORF185 in VSP-I and ORF502 in VSP-II (data not shown). The absence of VSP-I and VSP-II in the strains indicates their similarity to the pre-seventh pandemic strains that prevailed before the beginning of the seventh pandemic in 1961.

None of the *V. cholerae* O1 strains characterized here had the cholera toxin genes and they were therefore non-toxigenic. The pathogenic and epidemic potential as well as the clinical and public health significance role of non-toxigenic strains of *V. cholerae* O1 remain unclear but such strains have been isolated in several countries (Morris et al., 1984; Rodrigue...

Table 2. Response of the test and reference strains of *Vibrio cholerae* O1 to PCR screening for different genes and/or gene clusters of *V. cholerae* O1

VSP-I, *Vibrio* seventh pandemic island-I; VSP-II, *Vibrio* seventh pandemic island-II; MSHA, mannose-sensitive haemolysin agglutination pilin; *hlyA*, haemolysin; VPI-1, *Vibrio* pathogenicity island; *toxT*, gene encoding a member of the AraC family of bacterial transcription activators involved in the ToxR regulatory system; *acfb*, accessory colonization factor B; *PilE*, fimbrial assembly protein; *rtxA*, gene present in RTX gene cluster; *rtxC*, gene present in RTX gene cluster; *rstC*, encodes antirepressor activity; *rstA*, involved in CTXΦ replication and predicted to encode a polypeptide of 359 amino acids; *OrfU*(pl)*, minor coat protein; *tlc*, toxin-linked cryptic plasmid; *intI4*, constituent gene of integron.

<table>
<thead>
<tr>
<th>Strain</th>
<th>VSP-I (VCO175–VCO185)</th>
<th>MSHA (VCO398–VCO406)</th>
<th>HlyA (489)</th>
<th>VSP-II (VCO490–VCO517)</th>
<th>VPI-1 (VCO398–VCO406)</th>
<th>PilE</th>
<th>RTX</th>
<th>RS1</th>
<th>CTX</th>
<th>tlc</th>
<th>intI4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ER98-5538</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2796A(5)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2796C(1)</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W2796C(5)</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V3MDU</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical 569B</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Tor N16961</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
et al., 1994). However, the fact that these isolates are sporadically isolated from tourists complaining of gastrointestinal illness indicates that they may have some potential to initiate gastrointestinal symptoms, but not cholera. We further examined for other CTX prophage genes such as rstA, orfU and zot that are found adjacent to ctxAB to determine if the CTX prophage was present in the test strains. Strains W2796C(1), ER98-5538 and V3MDU were positive for all these three genes, whereas strain W2796C(5) was negative for only rstA. These strains seem to have a truncated CTX prophage. Only one strain, W2796A(5), was negative for all the three genes. Two other genes, namely tle, which is present adjacent to the CTX prophage, and integron (intI4), were positive in all the two test strains. None of the currently recognized alleles of the repressor gene rstR were found. However, PCR amplification of the rstC gene in the three strains, which were also positive for rstA, orfU and zot of the CTX prophage, indicates the presence of the RS1 element in their genome and thus confirmed them as the El Tor biotype. It also indicates the presence of a different allele of the rstR gene in the test strains.

In conclusion, we were able to show in this study the existence of non-toxigenic El Tor biotype strains of V. cholerae O1 similar to pre-seventh pandemic strains in a resort setting in Fiji, indicating the presence of a silent reservoir at this resort. Although epidemiological and molecular studies suggested that these strains were unlikely to be playing a major role in the outbreak in this instance, with the characteristics of this outbreak more consistent with norovirus infection, the similarity of these strains to pre-seventh pandemic strains, their association with gastrointestinal illness and their presence in island resort settings warrant more attention.

ACKNOWLEDGEMENTS

This research study was funded by the ICDDR, B: Centre for Health and Population Research and its donors, who provide unrestricted support to the Centre for its operations and research. Current donors providing unrestricted support include: Australian International Development Agency (AusAID), Government of Bangladesh, Canadian International Development Agency (CIDA), The Kingdom of Saudi Arabia (KSA), Government of the Netherlands, Government of Sri Lanka, Swedish International Development Cooperation Agency (SIDA), Swiss Development Cooperation (SDC) and Department for International Development, UK (DFID). We gratefully acknowledge these donors for their support and commitment to the Centre’s research efforts. We also acknowledge Mr John Bates, Queensland Health Scientific Services, Dr Geoff Hogg and Dr Margaret Whipp, MDUH, Dr Narendra Singh, Secretariat of the Pacific Community (SPC) and Mr Waisale Delai, Dr Joe Koroivueta and Dr Timaima Tuketei from the Fiji Ministry of Health for their assistance with this study. Jenny Bennett from the Institute of Environmental Science and Research Limited (ESR) is acknowledged for technical work on New Zealand strains and Dr Mike O’Leary and Dr Don Sharp from the World Health Organization are acknowledged for their role in investigations during two previous outbreaks of gastrointestinal disease at the tourist resort from which isolates were characterized.

REFERENCES


