Intraspecific mitochondrial DNA polymorphism within the emerging filamentous fungal pathogen *Trichoderma longibrachiatum*

Zsuzsanna Antal,1 János Varga,2 László Kredics,1 András Szekeres,2 Lóránt Hatvani,2 László Manczinger,2 Csaba Vágvölgyi2 and Elisabeth Nagy1,3

1Microbiological Research Group, Hungarian Academy of Sciences and University of Szeged, PO Box 533, H-6701 Szeged, Hungary
23Department of Microbiology, Faculty of Sciences2, and Department of Clinical Microbiology, Faculty of Medicine3, University of Szeged, Szeged, Hungary

The genetic diversity of the emerging fungal pathogen *Trichoderma longibrachiatum* was examined at the level of mitochondrial DNA. The 17 investigated strains, comprising nine clinical and eight non-clinical isolates, exhibited seven and ten different mitochondrial DNA profiles by using the restriction enzymes *Bsu*RI and *Hin*6I, respectively. The sizes of mitochondrial DNAs varied from 34.9 to 39.5 kb. The discriminatory power of the method was higher than that of internal transcribed spacer sequence analysis and therefore should be more suitable for identification and epidemiological investigations. However, clinical and non-clinical isolates did not form separate clusters on the resulting dendrogram and thus there was no indication of a correlation between genetic structure and pathogenicity of the isolates.

INTRODUCTION

An increasing number of mycoses are reported in many countries owing to a greater life expectancy associated with an increase in the quality of medical and surgical procedures, as well as the emergence of infections and diseases affecting the immune system. Additionally, more common airborne and soil-borne fungi are being added to the list of potential human pathogens. Strain typing is a necessary tool to identify the pathogenic strains, find the reservoirs, investigate the epidemiology and analyse the modes of transmission in cases of nosocomial outbreaks of fungal infections.

Trichoderma species are common, soil-borne, filamentous fungi and have long been known as non-harmful microorganisms. They are used in biotechnology as sources of enzymes (Kubicek & Penttilä, 1998) and antibiotics (Ghisalberti & Sivasithamparam, 1991). Moreover, they are applied to agricultural crops as plant growth promoters and biofungicides (Benítez, 1994). They are already proved to be applicable to the identification and epidemiological investigation of medically important members of the very diverse group of dematiaceous fungi (De Cock et al., 1994; Ishizaki et al., 1995; Kawasaki et al., 1993, 1999a, b; Yamagishi et al., 1997).

Potential virulence factors of *T. longibrachiatum* strains, derived from clinical or soil samples, have been examined to compare their capacity to cause human infection (Antal et al., 2005), but, on the whole, there have been no significant differences in the examined features. The present study was aimed at the investigation of intraspecific variability at the DNA level on similar sets of strains by using the method of mitochondrial (mt)DNA RFLP, which has already proved to be applicable to the identification and epidemiological investigation of medically important members of the very diverse group of dematiaceous fungi (De Cock 1994; Ishizaki et al., 1995; Kawasaki et al., 1993, 1999a, b; Yamagishi et al., 1997).

Abbreviations: ITS, internal transcribed spacer; RAPD, random amplification of polymorphic DNA.

Received 12 August 2005
Accepted 9 September 2005
METHODS

The isolates used in the experiments were identified as *T. longibrachiatum* by sequence analysis of the ITS region. mtDNA RFLPs of eight non-clinical and nine clinical *T. longibrachiatum* isolates were examined (Table 1). For mtDNA characterization, the fast typing method of Varga et al. (1993) was used. Total DNA samples were isolated from lyophilized mycelia by the method of Leach et al. (1986) and digested with *Bsu*RI (GG/CC) or *Hin*6I (G/CGC) restriction enzymes. DNA fragments were separated by agarose gel electrophoresis and visualized under UV light. The sizes of the mtDNA fragments were determined by using GelBase/GelBlot Pro Gel Analysis software (UltraViolet Products), using *λ*-pUC mix (Fermentas) as the molecular mass marker. The mtDNA profiles were converted to a similarity matrix and phylogenetic distances were calculated by using PhylTools software (Buntjer, 1997) to create a dendrogram by the unweighted pair group method with arithmetic means, using the NEIGHBOR program of the PHYLIP software package (version 3.57c; Felsenstein, 1995).

RESULTS AND DISCUSSION

Based on *Bsu*RI RFLP profiles, the saprotrophic and clinical isolates belonged to three and five different haplotypes, respectively (Fig. 1a, Table 1). Certain non-clinical isolates collected near Szeged, Hungary, exhibited the same mtDNA

Table 1. Origin, mtDNA types and size of the *T. longibrachiatum* isolates examined

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Origin</th>
<th>mtDNA type (BsuRI)</th>
<th>mtDNA type (Hin6I)</th>
<th>mtDNA size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CECT 20105</td>
<td>Soil; Egypt</td>
<td>I</td>
<td>I</td>
<td>39.5</td>
</tr>
<tr>
<td>CECT 2412</td>
<td>Mushroom compost; UK</td>
<td>II</td>
<td>II</td>
<td>37.2</td>
</tr>
<tr>
<td>CECT 2606</td>
<td>Soil; Sierra Leone</td>
<td>III</td>
<td>III</td>
<td>36.4</td>
</tr>
<tr>
<td>SZMC 1012</td>
<td>Soil; Hungary</td>
<td>I</td>
<td>I</td>
<td>39.5</td>
</tr>
<tr>
<td>SZMC 1158</td>
<td>Soil; Hungary</td>
<td>I</td>
<td>I</td>
<td>39.5</td>
</tr>
<tr>
<td>SZMC 1159</td>
<td>Soil; Hungary</td>
<td>I</td>
<td>I</td>
<td>39.5</td>
</tr>
<tr>
<td>SZMC 0886</td>
<td>Soil; Hungary</td>
<td>II</td>
<td>II</td>
<td>37.2</td>
</tr>
<tr>
<td>SZMC 0887</td>
<td>Soil; Hungary</td>
<td>II</td>
<td>II</td>
<td>37.2</td>
</tr>
<tr>
<td>UAMH 9573</td>
<td>Peritoneal catheter; Newfoundland, Canada</td>
<td>IV</td>
<td>IV</td>
<td>34.9</td>
</tr>
<tr>
<td>UAMH 9515</td>
<td>Peritoneal fluid; Newfoundland, Canada</td>
<td>V</td>
<td>V</td>
<td>36.4</td>
</tr>
<tr>
<td>ATCC 208859</td>
<td>Human immunodeficiency virus-positive patient; Texas, USA</td>
<td>VI</td>
<td>VI</td>
<td>35.1</td>
</tr>
<tr>
<td>CM 382</td>
<td>Peritoneal fluid; Gran Canaria, Spain</td>
<td>VI</td>
<td>VI</td>
<td>35.1</td>
</tr>
<tr>
<td>CBS 446.95</td>
<td>Lung; Austria</td>
<td>VI</td>
<td>VI</td>
<td>35.1</td>
</tr>
<tr>
<td>ATCC 201044</td>
<td>Skin biopsy; Texas, USA</td>
<td>VII</td>
<td>VII</td>
<td>37.4</td>
</tr>
<tr>
<td>IP 2110.92</td>
<td>Lung, brain, heart, stomach; France</td>
<td>II</td>
<td>VIII</td>
<td>37.2</td>
</tr>
<tr>
<td>UAMH 7955</td>
<td>Sinus of a transplant patient; Pennsylvania, USA</td>
<td>VI</td>
<td>IX</td>
<td>35.1</td>
</tr>
<tr>
<td>UAMH 7956</td>
<td>Faeces, liver, lung; Iowa, USA</td>
<td>II</td>
<td>X</td>
<td>37.2</td>
</tr>
</tbody>
</table>
patterns as either the non-clinical isolate CECT 20105 from Egypt or CECT 2412 from the UK (Table 1). More interestingly, the haplotype of two clinical isolates (IP 2110.92 from France and UAMH 7956 from the USA) was identical to those of non-clinical strains (SZMC 0886 and SZMC 0887 derived from soil in Hungary and CECT 2412 originating from mushroom compost from the UK; Fig. 1a, Table 1), suggesting close phylogenetic relationships among strains. Nevertheless, using the restriction enzyme Hin6I, the clinical and non-clinical isolates could be separated from each other (Fig. 1b, Table 1). However, neither enzyme could distinguish among three clinical isolates of widely dispersed geographical origin (ATCC 208859 from the USA, CM 382 from Spain and CBS 446.95 from Austria). Altogether, seven haplotypes could be distinguished by both restriction enzymes, while three additional ones could be distinguished only by Hin6I. In addition to the diversity shown in the RFLP patterns of the examined T. longibrachiatum strains, the sizes of their mtDNAs were also different, varying from 34.9 to 39.5 kb (Table 1). Previously, we characterized a mtDNA of 28.5 kb in a Trichoderma harzianum isolate (Antal et al., 2002). Meyer (1991) observed mtDNAs in the range 32.6–32.8 kb in Trichoderma viride isolates, while Chambergo et al. (2002) determined the mtDNA of Trichoderma reesei to be 42.1 kb. The observed size variability of mtDNAs of T. longibrachiatum isolates is possibly caused by loss of introns or intergenic sequences, which has been observed in several Aspergillus species (Hamari et al., 2001, 2003). Based on the RFLP profiles and sizes of mtDNA, four groups could be identified. One group included the clinical isolates CM 382, ATCC 208859, CBS 446.95, UAMH 9515 and UAMH 7955 with mtDNAs in the range of 35.1–36.4 kb (Figs 1 and 2, Table 1). Isolates CECT 2412, SZMC 0886, SZMC 0887, IP 2110.92 and UAMH 7956 belonged to the second group with mtDNAs of 37.2 kb, while the third group comprised isolates ATCC 201044, SZMC 1012, SZMC 1158, SZMC 1159 and CECT 20105 with mtDNAs of between 37.4 and 39.5 kb. Another group consisted of isolates CECT 2606 and UAMH 9573 with mtDNAs of 36.4 and 34.9 kb, respectively. These two isolates were also positioned on a separate branch based on phylogenetic analysis of sequences of the ITS region (Kredics et al., 2003b). In the case of the other isolates, the nuclear rDNA sequence data did not correlate with mtDNA-based clustering. Such a phenomenon has been observed elsewhere within other fungal taxa (Geiser et al., 1996), possibly due to differences in inheritance and mutation rates of the nuclear and mitochondrial genomes.

Although five clinical isolates formed a well-defined group, other non-clinical and clinical isolates did not form separate clusters on the dendrogram constructed from mtDNA RFLP profiles (Fig. 2). Based on the observation that clinical isolates could not be distinguished from non-clinical ones, the question of whether every environmental isolate has the capacity to cause infection remains unanswered. Similar observations have been made for the widespread opportunistic fungal pathogen Aspergillus fumigatus (Latgé, 2001; Varga & Tóth, 2003). DNA-based molecular methods have become routinely used tools in clinical microbiological laboratories for species identification and epidemiological investigations of emerging filamentous fungal pathogens (Nagy et al., 2004). Random amplification of polymorphic DNA (RAPD), using both fingerprinting and random primers, has been used successfully to analyse isolates of the section Longibrachiatum (Kuhls et al., 1999). However, RAPD has been suggested to be prone to errors due to the low annealing temperatures (Rieseberg, 1996). ITS sequence analysis is a reliable method for phylogenetic analysis and species identification within the section Longibrachiatum of the genus Trichoderma. In recent years, efforts involving this molecular method have been made for the identification and taxonomic investigation of different Trichoderma species, including members of the section Longibrachiatum (Kuhls et al., 1997, 1999; Kindermann et al., 1998; Kredics et al., 2003b; Gherbawy et al., 2004; Druzhinina & Kubicek, 2005). However, as the variability of ITS sequences is low within the species T. longibrachiatum, this method is not appropriate for intraspecific population studies and strain typing. Analysis of mtDNA RFLP seems to be a more suitable method for the determination of intraspecific relationships, as the evolutionary rates of mtDNA are higher than those of nuclear DNA, which results in higher intraspecific variability.

In conclusion, the mtDNA RFLP method seems to be more reliable than the frequently used RAPD technique, and has a much higher discriminatory power on the same set of strains than ITS sequence analysis (Kredics et al., 2003b).
Therefore, this technique seems to be useful for epidemiological studies to clarify the relationships between clinical \textit{T. longibrachiatum} isolates, and for the investigation of the occurrence of potential emerging pathogenic strains in the environment. Further studies are in progress to characterize the mtDNAs of \textit{T. longibrachiatum} strains in more detail.

ACKNOWLEDGEMENTS

This work was supported financially by grant F037663 from the Hungarian Scientific Research Fund and by grant NKFP OM-00083/2004 from the Hungarian Government.

REFERENCES

Meyer, R. J. (1991). Mitochondrial DNAs and plasmids as taxonomic
characteristics in *Trichoderma viride*. *Appl Environ Microbiol* 57,
2269–2276.

diagnosis, epidemiology and taxonomy of emerging medically

**Richter, S., Cormican, M. G., Pfaller, M. A., Lee, C. K., Gingrich, R.,
Rinaldi, M. G. & Sutton, D. A.** (1999). Fatal disseminated *Trichoderma longibrachiatum* infection in an adult bone marrow transplant
Microbiol* 37, 1154–1160.

Rieseberg, L. H. (1996). Homology among RAPD fragments in

Samuels, G. J., Petrini, O., Kuhls, K., Lieckfeldt, E. & Kubicek, C. P.

**Seguin, P., Degeilh, B., Grulois, I., Gacouin, A., Maugendre, S.,
brain abscess due to *Trichoderma longibrachiatum* after surgical

**Tanis, B. C., van der Pijl, H., van Ogtrop, M. L., Kibbelaar, R. E. &
Chang, P. C.** (1999). Fatal fungal peritonitis by *Trichoderma longi-
brachiatum* complicating peritoneal dialysis. *Nephrol Dial Transplant*
10, 114–116.

Varga, J. & Tóth, B. (2003). Genetic variability and reproductive

**Varga, J., Kevei, F., Fekete, C., Coenen, A. F., Kozakiewicz, Z. &
Croft, J. H.** (1993). Restriction fragment length polymorphisms in the
mitochondrial DNAs of the *Aspergillus niger* aggregate. *Mycol Res* 97,
1207–1212.

mtDNA polymorphism of *Trichoderma longibrachiatam*