Ultrastructural observation of *Helicobacter pylori* in glucose-supplemented culture media

Fujio Sato, Nagahito Saito, Kohei Konishi, Eriko Shoji, Mototsugu Kato, Hiroshi Takeda, Toshiro Sugiyama and Masahiro Asaka

Department of Gastroenterology and Hematology, Hokkaido University Graduate School of Medicine and Division of Endoscopy, Hokkaido University Medical Hospital, Kita-15 jou, Nishi 7-chome, Kita-ku, Sapporo, Japan

INTRODUCTION

Helicobacter pylori is a microaerophilic bacterium that gives rise to benign and malignant gastro-duodenal diseases (Buck et al., 1986; Asaka et al., 1994). It occurs in spiral and coccoid forms in the human gut (Chan et al., 1994; Hua & Ho, 1996). In liquid culture, it exists in the spiral form and transforms into the coccoid form under certain conditions (Catrenich & Makin, 1991). There is controversy over the existence of the coccoid form. Reports on its ultrastructure and its viability in culture are reported in this paper using a liquid culture experiment.

METHODS

Bacterial culture. *H. pylori* ATCC 43504\(^7\) was cultured in Brucella broth (Difco) with 10% heat-inactivated horse serum (referred to as CLM) and in the same medium supplemented with 10, 100, 300 or 500 mM glucose (referred to as 10 mM-LM etc.) under microaerophilic conditions (10% CO\(_2\), 5% O\(_2\), 85% N\(_2\)) with agitation at 37°C for 7 days. The reason for addition of 300 or 500 mM glucose is as follows. In preliminary experiments, we examined morphological changes and culturability in 10 mM-LM and 100 mM-LM in comparison with those in CLM. By the third day of culture, the spiral form made up less than 1% of the total population in CLM. By the fourth day of culture, the spiral form had transformed into coccoid forms in all media. The coccoid forms could be further divided into two types, A and B, by electron microscopy. The type A coccoid form had an irregular surface with few flagella and indistinct cytoplasmic membrane. The type B coccoid form had a better-maintained integral membrane structure and was the dominant form in 300 mM glucose-supplemented medium. The highest culturability was obtained using 300 mM glucose-supplemented medium. Based on observations of ultrastructural changes in relation to the culturability data, the coccoid forms could be categorized into three stages: dying, viable but non-culturable and proliferating organisms. The optimal glucose concentration for *H. pylori* culture in this liquid medium culture experiment was approximately 300 mM.

Abbreviation: CLM, control liquid medium.
For counting of H. pylori cells, the bacteria were serially diluted (1:10) in 0·1 M PBS (pH 7·2) and plated onto Columbia agar medium (BBL). The plates were then incubated at 37 °C for 7 days under microaerobic conditions. The number of colonies was counted on day 7 to determine the rate of bacterial proliferation. This procedure was repeated five times as mentioned above.

Preparation for electron microscopy. On each day of culture, organisms in liquid medium were fixed in 2 % glutaraldehyde in 0·1 M cacodylate buffer (pH 7·4) for 30 min and post-fixed in 2 % osmium tetroxide for 30 min at 4 °C. After dehydration in a graded series of ethanol, the specimens were divided in half, half for SEM and half for TEM. For SEM, the dehydrated specimens were soaked in isomyl acetate, critical-point-dried (Hitachi HCP-2) and coated with platinum (Hitachi E-1030). The samples were observed with a scanning electron microscope (Hitachi S-4500). For conventional TEM, acetone was substituted for ethanol during the process and samples were then embedded in Epok 812 (Oken). Ultrathin sections were stained with both uranyl acetate and lead citrate and finally observed with an electron microscope (Hitachi H-800). For immunoelectron microscopy, bacteria were fixed in a mixture of 0·5 % glutaraldehyde and 2 % paraformaldehyde in 0·1 M HEPES/NaOH (pH 6·8) for 15 min and then rinsed in 2 % paraformaldehyde in the same buffer for 2 weeks at 4 °C. After fixation, specimens were dehydrated in 80 % ethanol and finally embedded in Lowicryl K4M (Polysciences). Ultrathin sections were made and immuno-stained as reported previously (Saito et al., 1998). Briefly, after ultrathin sections were immersed in a mixture of 0·5 % normal goat serum and 9·05 % BSA in 0·1 M Tris/HC1 (pH 6·8) for a 3 min pre-incubation, they were incubated in appropriately diluted anti-H. pylori antibody (Dakopatts) for 2 h and then rinsed in 10 nm gold particle-labelled goat antiserum specific for rabbit IgG (GAR GI0; Amersham) for 1 h. This antibody was used to ascertain that bacteria in the culture were H. pylori. Sections were observed after staining with uranyl acetate. As a control, diluted normal rabbit serum was used in visual fields on the final day. The percentage of spiral forms was approximately 2 and 0·5 % in 0·01 M PBS (pH 7·2) and plated onto Columbia agar medium (BBL). The plates were then incubated at 37 °C for 7 days under microaerobic conditions. The number of colonies was counted on day 7 to determine the rate of bacterial proliferation. This procedure was repeated five times as mentioned above.

Preparation for electron microscopy. On each day of culture, organisms in liquid medium were fixed in 2 % glutaraldehyde in 0·1 M cacodylate buffer (pH 7·4) for 30 min and post-fixed in 2 % osmium tetroxide for 30 min at 4 °C. After dehydration in a graded series of ethanol, the specimens were divided in half, half for SEM and half for TEM. For SEM, the dehydrated specimens were soaked in isomyl acetate, critical-point-dried (Hitachi HCP-2) and coated with platinum (Hitachi E-1030). The samples were observed with a scanning electron microscope (Hitachi S-4500). For conventional TEM, acetone was substituted for ethanol during the process and samples were then embedded in Epok 812 (Oken). Ultrathin sections were stained with both uranyl acetate and lead citrate and finally observed with an electron microscope (Hitachi H-800). For immunoelectron microscopy, bacteria were fixed in a mixture of 0·5 % glutaraldehyde and 2 % paraformaldehyde in 0·1 M HEPES/NaOH (pH 6·8) for 15 min and then rinsed in 2 % paraformaldehyde in the same buffer for 2 weeks at 4 °C. After fixation, specimens were dehydrated in 80 % ethanol and finally embedded in Lowicryl K4M (Polysciences). Ultrathin sections were made and immuno-stained as reported previously (Saito et al., 1998). Briefly, after ultrathin sections were immersed in a mixture of 0·5 % normal goat serum and 9·05 % BSA in 0·1 M Tris/HC1 (pH 6·8) for a 3 min pre-incubation, they were incubated in appropriately diluted anti-H. pylori antibody (Dakopatts) for 2 h and then rinsed in 10 nm gold particle-labelled goat antiserum specific for rabbit IgG (GAR GI0; Amersham) for 1 h. This antibody was used to ascertain that bacteria in the culture were H. pylori. Sections were observed after staining with uranyl acetate. As a control, diluted normal rabbit serum was used in visual fields on the final day. The percentage of spiral forms was approximately 2 and 0·5 % in 0·01 M PBS (pH 7·2) and plated onto Columbia agar medium (BBL). The plates were then incubated at 37 °C for 7 days under microaerobic conditions. The number of colonies was counted on day 7 to determine the rate of bacterial proliferation. This procedure was repeated five times as mentioned above.

Preparation for electron microscopy. On each day of culture, organisms in liquid medium were fixed in 2 % glutaraldehyde in 0·1 M cacodylate buffer (pH 7·4) for 30 min and post-fixed in 2 % osmium tetroxide for 30 min at 4 °C. After dehydration in a graded series of ethanol, the specimens were divided in half, half for SEM and half for TEM. For SEM, the dehydrated specimens were soaked in isomyl acetate, critical-point-dried (Hitachi HCP-2) and coated with platinum (Hitachi E-1030). The samples were observed with a scanning electron microscope (Hitachi S-4500). For conventional TEM, acetone was substituted for ethanol during the process and samples were then embedded in Epok 812 (Oken). Ultrathin sections were stained with both uranyl acetate and lead citrate and finally observed with an electron microscope (Hitachi H-800). For immunoelectron microscopy, bacteria were fixed in a mixture of 0·5 % glutaraldehyde and 2 % paraformaldehyde in 0·1 M HEPES/NaOH (pH 6·8) for 15 min and then rinsed in 2 % paraformaldehyde in the same buffer for 2 weeks at 4 °C. After fixation, specimens were dehydrated in 80 % ethanol and finally embedded in Lowicryl K4M (Polysciences). Ultrathin sections were made and immuno-stained as reported previously (Saito et al., 1998). Briefly, after ultrathin sections were immersed in a mixture of 0·5 % normal goat serum and 9·05 % BSA in 0·1 M Tris/HC1 (pH 6·8) for a 3 min pre-incubation, they were incubated in appropriately diluted anti-H. pylori antibody (Dakopatts) for 2 h and then rinsed in 10 nm gold particle-labelled goat antiserum specific for rabbit IgG (GAR GI0; Amersham) for 1 h. This antibody was used to ascertain that bacteria in the culture were H. pylori. Sections were observed after staining with uranyl acetate. As a control, diluted normal rabbit serum was used in visual fields on the final day. The percentage of spiral forms was approximately 2 and 0·5 % in 0·01 M PBS (pH 7·2) and plated onto Columbia agar medium (BBL). The plates were then incubated at 37 °C for 7 days under microaerobic conditions. The number of colonies was counted on day 7 to determine the rate of bacterial proliferation. This procedure was repeated five times as mentioned above.

For counting of H. pylori cells, the bacteria were serially diluted (1:10) in 0·1 M PBS (pH 7·2) and plated onto Columbia agar medium (BBL). The plates were then incubated at 37 °C for 7 days under microaerobic conditions. The number of colonies was counted on day 7 to determine the rate of bacterial proliferation. This procedure was repeated five times as mentioned above.

For counting of H. pylori cells, the bacteria were serially diluted (1:10) in 0·1 M PBS (pH 7·2) and plated onto Columbia agar medium (BBL). The plates were then incubated at 37 °C for 7 days under microaerobic conditions. The number of colonies was counted on day 7 to determine the rate of bacterial proliferation. This procedure was repeated five times as mentioned above.

Culturability in each medium

Culturability in 300 mM-LM was maintained until the final day of culture. Although culturability was maintained better in 10 mM-LM, 100 mM-LM and 500 mM-LM than in CLM at the beginning of the culture, colonies were scarcely observed on days 6 and 7 (virtually 0 c.f.u. ml⁻¹). On days 3 and 4, culturability was maintained in spite of the reduction of spiral forms (Fig. 1; curves d–f). On the final day in 300 mM-LM, culturability was notably maintained, though spiral forms were difficult to observe in the medium (Fig. 1; curves b and e). During culture, the pH in each medium was maintained between 6·8 and 7·4.

DISCUSSION

In this study, glucose supplementation failed to affect significantly the morphological change of H. pylori from two types, A and B, under more detailed observation. Type A showed an irregular, rough or bumpy surface with few flagella and an indistinct cytoplasmic membrane that obscured much of the intracytoplasmic structure, and these bacteria also tended to adhere each other. Type A was more abundant than type B in the majority of liquid media, with the exception of 300 mM-LM (Fig. 2b). Cells of type B, which showed a smoother surface, had tightly encircled flagella, a comparatively clear membrane structure and a better-maintained intracytoplasmic structure. Type B was observed more often in 300 mM-LM (Fig. 2c). Both coccoid forms were positive for anti-H. pylori antibody in the cytoplasm and flagella (Fig. 3). In the controls, no immunostaining was observed. Both types A and B were found to be mixed in each of the media examined, and they became more difficult to differentiate from each other by electron microscopy with increasing time in culture. In 300 mM-LM, types A and B could be distinguished precisely because both spiral and coccoid forms showed irregularly bumpy surfaces. The proportion of type B in 300 mM-LM was higher than in other media (Fig. 4).
spiral to coccoid forms, but instead altered the culturability. The coccoid forms could be classified into two types, A and B, by SEM and TEM.

Glucose effectively preserved culturability. Genomic analysis of H. pylori has confirmed that glucose is the main energy source of this organism and that it is used to produce ATP. It is suggested that ATP is produced via the glycolytic pathway (Tomb et al., 1997), the pentose phosphate pathway (Mendz et al., 1993) and the Entner–Doudoroff pathway (Chalk et al., 1994). This sugar can also supply membranous components of the organism such as phospholipids and fatty acids of the cell membrane, peptidoglycan and lipopolysaccharide, including lipids A and O (Geis et al., 1990). This study indicated that culturability was maintained better in each glucose-supplemented medium than in CLM without glucose supplementation. The highest proportion of type B coccoid forms was observed in 300 mM-LM, which also showed the best culturability. This type of H. pylori has a well-preserved membranous structure compared with the type A coccoid form. The added glucose could be used for cell membrane synthesis, as the type B coccoid form was abundant in 300 mM-LM. This also suggests that mucopolysaccharides in human gastric mucus are important for bacterial proliferation, and H. pylori has an enzyme capable of synthesis of bacterial cell membrane that is able to catalyse the production of mucopolysaccharides from glucose (Bode et al., 1988; Slomiany & Slomiany, 1992).

Culturability was worse in 500 mM-LM than in 300 mM-LM. In a preliminary study, using sucrose to alter osmotic pressure, we observed that the surface structure of H. pylori became irregular or bumpy in hypertonic liquids. 500 mM-LM might cause dehydration of H. pylori and might be too hypertonic for colonies to form. A suitable concentration of glucose might be required for membrane production and cell proliferation. Takeuchi et al. (1998) indicated, using a cdrA-disrupted H. pylori mutant, that cdrA was involved in maintaining the rod shape. An intermediate form between the spiral and coccoid forms could not be identified conclusively during these culture experiments. It is supposed that the spiral form is transformed immediately and rapidly into the coccoid form (Saito et al., 2003). Glucose is not thought to be related to the rapid cdrA-related deformation, because the transformation from spiral to coccoid forms was not affected by supplementation of glucose in the medium.

Coccoid forms were divided into two types, A and B, by electron microscopy. The function of the two coccoid forms of H. pylori is unclear. One possibility is that this form represents a degenerating organism (Hua & Ho, 1996). Kusters et al. (1997) indicated that the coccoid H. pylori was the morphological manifestation of bacterial cell death, observing the transformation process by electron microscopy. On the other hand, another suggestion is that this form is viable but non-culturable (Eaton et al., 1995). Benaissa et al. (1996) asserted that coccoid H. pylori was devoid of degenerative change. Many in vitro culture studies have reported that coccoid formation was associated with an

Fig. 2. Ultrastructure of spiral and types A and B coccoid forms of H. pylori. (a) SEM of spiral forms on day 1. Flagella are seen on one side of the cells (arrows). A spherical organism is visible (asterisk). Bar, 2 μm. Inset: TEM of a spiral form. A flagellum (arrow) and an intracytoplasmic granule (arrowhead) are visible. Bar, 0·5 μm. (b) SEM of type A coccoid forms on day 3 in CLM. Cells are spherical with an irregular surface and possess few flagella. They have a tendency to adhere to each other. Bar, 2 μm. Inset: TEM of type A coccoid form. The surface is sunken (arrowhead). Membrane and intracytoplasmic structures are not clearly visible. Bar, 0·5 μm. (c) SEM of type B coccoid forms on day 3 in 300 mM-LM. The smooth surface is tightly encircled by flagella (arrowheads). Bar, 2 μm. Inset: TEM of type B coccoid form. The membrane structure is well preserved and a flagellum is also visible (arrowhead). Bar, 0·5 μm.

Influence of glucose on H. pylori culture

http://jmm.sgmjournals.org

IP: 54.70.40.11
On: Tue, 23 Oct 2018 14:36:01
unsuitable change in the environment, such as nutritional deficiency (Mizoguchi et al., 1998), drug supplementation (Bode et al., 1993), pH change (Cellini et al., 1994), abnormal temperature (Shahamat et al., 1993) or prolonged culture (Sato, 2000). The ATP level of the coccoid forms was also reported to be only 0.1% of that of spiral forms (Sorberg et al., 1996). In spite of these reports, the coccoid form is not necessarily considered to be a completely dead organism. In our study, culturability was well preserved even on days 3 and 4, when coccoid forms were in a majority in all media. This is highly suggestive of some coccoid forms possessing a certain degree of culturability. Both the number and culturability of the type B coccoid form were preserved in media supplemented with glucose. Type B coccoid forms possess comparatively clear membrane structure, and some may play a role in forming colonies on the agar medium after being supplied with ATP that originated from the glucose. In CLM, culturability was lost by day 5, though type B coccoid forms existed at a similar frequency to the previous day. These results mean that some type B coccoid forms are unable to form colonies. It is difficult to explain why almost all type B coccoid forms should be completely dead on day 5 and should be so different from the previous day, when they were capable of colony formation. A lack of colony formation from cells grown in one medium (CLM in the present circumstances) does not necessarily indicate that bacteria are completely dead. Type B bacteria in 300 mM-LM could produce many colonies on the same cultural agar. Therefore, it is considered that some of the type B coccoid forms may be in a viable but non-culturable stage (the so-called ‘VNC’ form).

Recently, micro-organisms without colony-forming ability in pure culture were also reported to make colonies in a simulated natural environment (Kaeberlein et al., 2002), and this suggests that a VNC form similar to type B coccoid H. pylori may exist in the natural environment. On the other hand, culturability was preserved on day 6 or 7 in 300 mM-LM, despite the rapid reduction in type B coccoid forms. This suggests that even type A coccoid forms possess limited culturability. Proliferative capacity was lost completely within 24 h in liquid media, with the exception of 300 mM-LM. This phenomenon implies that the organisms are switched rapidly from a colony-forming to a non-colony-forming stage through a predetermined pathway. It is suggested that not only spiral forms, but also some type A and B coccoid forms, are viable at the beginning of culture, since both coccoid forms were recognized to possess DNA (Saito et al., 2003). After a lapse of several days in culture, both coccoid forms were severely disrupted morphologically and were confirmed to be dead. They finally degraded in culture medium.

Thus, our study demonstrates that coccoid forms can be divided ultrastructurally into two types, A and B, that consist of three discrete stages, dying, VNC and proliferating stages. An optimal liquid medium supplemented with approximately 300 mM glucose is the most suitable both for increasing the colony-forming ability and for preservation of H. pylori membrane structure under pure culture conditions.
ACKNOWLEDGEMENTS

The authors thank Ms Yumiko Ohkochi CLT (Department of Gastroenterology & Hematology, Hokkaido Univ. Graduate School of Medicine) for her technical assistance.

REFERENCES

Influence of glucose on H. pylori culture