Effect of antifungal agents on the activity of aspartyl proteinases secreted by Candida albicans

Martin Schaller,1* Nikola Knjaic,1 Markus Niewerth,1 Gerald Hamm,2 Bernhard Hube3 and Hans C. Korting1

1,2 Department of Dermatology and Allergology1 and Department of Periodontology2, University of Munich, Frauenlobstr. 9-11, D-80337 Munich, Germany

2 Robert Koch-Institut, Berlin, Germany

The inhibitory effect of human immunodeficiency virus (HIV) proteinase inhibitors amprenavir and saquinavir and antifungal agents terbinafine, ketoconazole, amphotericin B and ciclopiroxolamine on aspartyl proteinases (Saps) secreted by Candida albicans was tested in an in vitro spectrophotometric assay. As expected, both HIV proteinase inhibitors showed a significant inhibitory effect on Sap activity, which was comparable to that of the classical aspartyl proteinase inhibitor pepstatin A (P < 0.001). Antifungal drugs such as ketoconazole, terbinafine and amphotericin B had no, or only minor, inhibitory effects on proteolytic activity. In contrast, a significant reduction in Sap activity could be demonstrated during treatment with the antifungal agent ciclopiroxolamine (P < 0.001). These results point to a multiple effect of this antifungal agent and might explain the reduced adherence of C. albicans to human epithelial cells at subinhibitory doses.

In the last decade, it has been demonstrated that secreted aspartyl proteinases (Saps) are important virulence factors for several types of Candida albicans infections and that inhibition of these proteinases have a protective effect for the host (De Bernardis et al., 2001; Hube & Naglik, 2001). Based on the observation that antifungal drugs may have broad modes of action, we questioned whether certain antifungal components may also influence the activity of Saps, which, in turn, may enhance the antifungal activity of a particular drug. For example, Wu et al. (1999) showed that the natural antimicrobial agent lysozyme not only showed a candidacidal effect at higher concentrations but also decreased the extracellular concentration of Saps significantly without affecting cell growth or viability of C. albicans. In addition, lysozyme also directly caused degradation of purified Sap protein (Wu et al., 1999). Other studies showed that certain inhibitors designed to inhibit human immunodeficiency virus (HIV) proteinase also had a direct effect on the activity of Saps (Korting et al., 1999; Cassone et al., 1999; Borg-von Zepelin et al., 1999). To investigate whether recently designed HIV proteinase inhibitors, such as amprenavir, or antifungal agents, such as members of the allylamines, azoles, polyenes or pyridone antimycotic components, inhibit Sap activity, we measured the effects of selected HIV inhibitors and antifungal drugs on the proteolytic activity of C. albicans using a spectrophotometric assay.

Abbreviations: HIV, human immunodeficiency virus; LSD, least significance difference; Sap, secreted aspartyl proteinase; TCA, trichloroacetic acid.

*Correspondence
Martin Schaller
Martin.Schaller@lrz.uni-muenchen.de

Received 16 August 2002
Accepted 20 November 2002

DOI 10.1099/jmm.0.05048-0

© SGM 2003

Journal of Medical Microbiology (2003), 52, 247–249

52, 247–249
Stock solutions were prepared for amprenavir, saquinavir and pepstatin A by dissolving in absolute methanol at a concentration of 1·0 μM for saquinavir and 100 μM for pepstatin A and amprenavir. Amprenavir and saquinavir were diluted with 0·2 M sodium citrate/HCl buffer (pH 4·5) (Merck) to 1·0, 0·2 and 0·1 μM; pepstatin A was diluted with sodium citrate/HCl buffer to 0·5, 0·75 and 1·0 μM. Terbinafine was diluted in distilled water to 100 μM. Ketoconazole and amphotericin B were diluted in dimethyl formamide (Sigma) to 1 μM. Ciclopiroxolamine was diluted in dimethyl formamide to 100 μM. Dilutions were 0·5, 1 and 2 μM for terbinafine and ciclopiroxolamine, 0·2, 0·5 and 1 μM for amphotericin B and 0·5, 0·75 and 1 μM for ketoconazole.

Studies were carried out using bovine haemoglobin (Sigma) as substrate (Korting et al. 1999). Test tubes were each filled with 750 μl 0·2 M sodium citrate/HCl buffer, 750 μl fresh substrate solution (1 % substrate in 0·2 M sodium citrate/HCl buffer), 250 μl each sample and 250 μl amprenavir, saquinavir, pepstatin A, terbinafine, ketoconazole, amphotericin B or ciclopiroxolamine. Control experiments included assays without the addition of antifungal agents or inhibitors. Control experiments also included assays with dimethyl formamide or sodium citrate/HCl buffer alone without addition of antimycotics or proteinase inhibitors. Test reactions were incubated at 37 °C for 60 min (T60) in a shaker. The reaction was linear with time for up to 60 min. Three triplicate reactions were used for each experiment. Reactions were stopped with 500 μl trichloroacetic acid (TCA) and stored on ice. For each reaction mixture, an additional control was prepared by adding all ingredients as substrate (Korting et al. 1999; Watts et al. 1998; Schaller et al. 1999). Braga et al. (1992) investigated the effects of subinhibitory concentrations of ciclopirox on the adherence of C. albicans to human buccal and vaginal epithelial cells. These authors found a significant reduction in adhesion at concentrations from 1/2

![Fig. 1. Effects of pepstatin A (△), amprenavir (■) and ciclopiroxolamine (▲) on Sap activity of C. albicans strain 1 (a) and 2 (b). Each point represents the mean ± SD for three triplicate determinations. Differences in Sap activity between untreated and inhibitor-treated samples were highly significant (P < 0·001), as determined by the LSD test.](image-url)
to 1/16 of MIC50 and explained this effect by a reduced intracellular uptake of essential substrates and ions necessary for the ability of C. albicans to express its adherence mechanisms. Our study suggests that ciclopiroxolamine also directly effects the activity of Saps of C. albicans, which, in turn, may cause reduced adherence in vivo.

References


