DIAGNOSTIC METHODS

Recombinant OspC from Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii in the serodiagnosis of Lyme borreliosis

JAANA PANELIUS*, PEKKA LAHDENNE†, TERO HEIKKILÄ‡, MIIKKA PELTOMAA§, JARMO OKSI¶ and ILKKA SEPPÄLÄ**

*Haartman Institute, Department of Bacteriology and Immunology, †Hospital for Children and Adolescents, ‡Department of Otorhinolaryngology, University of Helsinki, §Department of Medicine, Turku University Central Hospital, Turku and ¶HUCH Laboratory Diagnostics, Helsinki University Central Hospital, Helsinki, Finland

Genes for the outer-surface protein C (OspC) from three north European human isolates of Borrelia burgdorferi sensu stricto, B. afzelii and B. garinii were cloned and sequenced. Polyhistidine-tagged recombinant OspC (rOspC) proteins were produced in Escherichia coli and used, after biotinylation, as antigens on streptavidin-coated plates in enzyme-linked immunosorbent assays (ELISA). In IgM ELISA, 30% (5/17) and 35% (6/17) of patients with erythema migrans (EM) in the acute or convalescent phase, respectively, reacted with one to three rOspCs. Of the patients, 53% (8/15) with neuroborreliosis (NB) and 53% (8/15) with Lyme arthritis (LA) had IgM antibodies to OspC. The immunoreactivity was stronger against rOspC from B. afzelii and B. garinii than against rOspC from B. burgdorferi sensu stricto. In early Lyme borreliosis (LB), rOspC and flagella performed equally well in detecting IgM antibodies. Cross-reactive antibodies to rOspC were observed in serum samples from patients with rheumatoid factor positivity and with syphilis or Epstein–Barr virus (EBV) infection. In IgM ELISA, thiocyanate in the serum dilution buffer reduced EBV-associated non-specific positive reactions. Of the patient sera examined in IgG ELISA, 30% (5/17) with EM in the acute phase, 35% (6/17) with EM in the convalescent phase, 33% (5/15) with NB and 60% (9/15) with LA were positive. Because of the heterogeneity of OspC, a polyvalent antigen with several OspC variants from at least B. afzelii and B. garinii is needed to improve the sensitivity of OspC ELISA in the serodiagnosis of LB in Europe.

Introduction

Serodiagnostic tests for Lyme borreliosis (LB) are based mainly on enzyme-linked immunosorbent assays (ELISA), the antigens being borrelial whole-cell lysate (WCL) or flagella. Currently, because of insufficient specificity and sensitivity, these tests perform suboptimally and Western blot (WB) analyses on ELISA positive samples are needed to confirm the diagnosis [1]. Some viral infections cause false-positive results in IgM serology [2] and, during the early stages of LB, antibody responses are often absent or delayed [3]. Use of recombinantly produced borrelial antigens has increased the specificity of serological assays, but sensitivity to single antigens has so far remained insufficient. Furthermore, new assays for serodiagnosis of LB are needed to discriminate LB from vaccination. The outer-surface protein C (OspC) of Borrelia burgdorferi has been found to induce an early IgM response [4–9]. In people vaccinated with OspA, OspC antibody assay has been proposed for discrimination between infection with B. burgdorferi sensu stricto and a vaccination response [9]. In the serodiagnosis of European LB with WCL immunoblots, specific antibody responses to OspC of the three borrelial genospecies as part of a combination of antigens have been reported to increase sensitivity [10]. The best combination of antigens for IgM WCL immunoblot included OspC from B. afzelii and B. garinii strains. However, false positive IgM reactions to OspC have occurred both in ELISA [6, 9] and in immunoblot [11]
studies on patients with mononucleosis. In an IgM ELISA, Rauer et al. [8] reported improved specificity over WCL when recombinant OspC (rOspC) was combined with a 14-kDa flagellin fragment. Two peptide antigens from the conserved regions of the OspC sequence have been evaluated in IgM ELISA, an amino-terminal peptide at position 9–22 [12] and a carboxy-terminal decapetide [13]. Both peptide antigens have shown improved discrimination between LB patients and controls in preliminary studies.

In IgG serology, a single rOspC antigen has proved to be beneficial in some studies [4, 5, 13, 14] but has shown low sensitivity in others [6, 9]. Recombinant chimeric borrelial proteins, including fragments from OspC, have also been studied as antigens in a combined IgG-IgM ELISA [15]. Recently, a rapid immunochromatographic assay based on these chimeric proteins was suggested to be as sensitive as, and more specific than, the commercial WCL ELISA [16].

A problem concerning the use of OspC as a diagnostic antigen is the extensive structural variation of this molecule (sequence identity ranging from 62% to 80%) within, as well as between, subspecies of *B. burgdorferi sensu lato* [17–19]. European and North American isolates of *B. burgdorferi sensu lato* have been classified into at least 16 serotypes of OspC [20, 21]: six OspC serotypes for *B. burgdorferi sensu stricto* and four for *B. afzelii* and five for *B. garinii* [22].

The purpose of the present study was to evaluate the advantage of combining variant rOspC antigens from all three pathogenic borrelial species in an ELISA panel. This report describes the cloning and expression of all three pathogenic borrelial species in an ELISA advantage of combining variant rOspC antigens from three European borrelial strains.

Materials and methods

Borrelia strains

The study used domestic borrelial strains of *B. burgdorferi sensu stricto* (ia) isolated from cerebrospinal fluid of a Finnish patient with neuroborreliosis, and of *B. afzelii* (A91) and *B. garinii* (40) isolated from skin biopsies of Finnish patients with erythema migrans. These strains were genotyped by PCR of the flaB and subsequent sequencing of the PCR product, as described previously [23].

Borrelia culture and DNA isolation

Borrelial strains were cultured in Barbour-Stoenner-Kelly-H (BSK-H) medium (Sigma) at 33°C with a CO₂ 5% atmosphere until growth was c. (1–2) × 10⁸ cells/ml. The genomic DNA was then isolated with the DNeasy Tissue Kit (Qiagen, Hilden, Germany).

PCR and cloning of the genes

For each borrelial strain, the ospC coding sequence was PCR-amplified from the genomic DNA (Table 1). Approximately 1 ng of template DNA was used and the parameters in the PCR amplification reaction were 30 cycles at 94°C for 1 min, 50°C for 1 min and 72°C for 1.5 min with AmpliTaq Gold DNA Polymerase (Perkin Elmer, USA), followed by a final extension of 10 min at 72°C. DNA products were visualised by gel electrophoresis on agarose 1% NA gel (Amersham Pharmacia, Uppsala, Sweden) containing ethidium bromide. The PCR products were cloned into the pCR 2.1-TOPO vector (Invitrogen, Groningen, The Netherlands). The *Escherichia coli* host cell used for cloning was INFiD (Invitrogen).

Table 1. Primers used in PCR reactions for ospC sequencing and expression of the respective protein

<table>
<thead>
<tr>
<th>Target DNA</th>
<th>Primer(5'→3')</th>
<th>Location (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1)</td>
<td>AAA AGG AGG CAC AAA TTA ATG</td>
<td>–18–3</td>
</tr>
<tr>
<td>2)</td>
<td>TAA GCC TAT TGG TAA AAA AAT A</td>
<td>225–246</td>
</tr>
<tr>
<td>3)</td>
<td>GTT GTG GCA GAA AGT CC</td>
<td>604–620</td>
</tr>
<tr>
<td>4)</td>
<td>TTG TAA GCT CTT TAA CTG AAT</td>
<td>611–591</td>
</tr>
<tr>
<td>5)</td>
<td>ATT GCC GCA TTA GTC AC</td>
<td>2269–2253</td>
</tr>
<tr>
<td>6)</td>
<td>GAA TCA ATC CAA AGA AAC A</td>
<td>2417–2399</td>
</tr>
<tr>
<td>Expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OspCBaA</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG ATG G</td>
<td>58–77</td>
</tr>
<tr>
<td>OspCBaATG</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG GTG G</td>
<td>58–77</td>
</tr>
<tr>
<td>OspCBgA</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG ATG G</td>
<td>58–77</td>
</tr>
<tr>
<td>OspCBgATG</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG GTG G</td>
<td>58–77</td>
</tr>
</tbody>
</table>

Underlining indicates BamHI and KpnI cleavage sites.

The study used domestic borrelial strains of *B. burgdorferi sensu stricto* (ia) isolated from cerebrospinal fluid of a Finnish patient with neuroborreliosis, and of *B. afzelii* (A91) and *B. garinii* (40) isolated from skin biopsies of Finnish patients with erythema migrans. These strains were genotyped by PCR of the flaB and subsequent sequencing of the PCR product, as described previously [23].

Borrelia strains were cultured in Barbour-Stoenner-Kelly-H (BSK-H) medium (Sigma) at 33°C with a CO₂ 5% atmosphere until growth was c. (1–2) × 10⁸ cells/ml. The genomic DNA was then isolated with the DNeasy Tissue Kit (Qiagen, Hilden, Germany).

PCR and cloning of the genes

For each borrelial strain, the ospC coding sequence was PCR-amplified from the genomic DNA (Table 1). Approximately 1 ng of template DNA was used and the parameters in the PCR amplification reaction were 30 cycles at 94°C for 1 min, 50°C for 1 min and 72°C for 1.5 min with AmpliTaq Gold DNA Polymerase (Perkin Elmer, USA), followed by a final extension of 10 min at 72°C. DNA products were visualised by gel electrophoresis on agarose 1% NA gel (Amersham Pharmacia, Uppsala, Sweden) containing ethidium bromide. The PCR products were cloned into the pCR 2.1-TOPO vector (Invitrogen, Groningen, The Netherlands). The *Escherichia coli* host cell used for cloning was INFiD (Invitrogen).

<table>
<thead>
<tr>
<th>Table 1. Primers used in PCR reactions for ospC sequencing and expression of the respective protein</th>
<th>Target DNA</th>
<th>Primer(5'→3')</th>
<th>Location (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing</td>
<td>1)</td>
<td>AAA AGG AGG CAC AAA TTA ATG</td>
<td>–18–3</td>
</tr>
<tr>
<td></td>
<td>2)</td>
<td>TAA GCC TAT TGG TAA AAA AAT A</td>
<td>225–246</td>
</tr>
<tr>
<td></td>
<td>3)</td>
<td>GTT GTG GCA GAA AGT CC</td>
<td>604–620</td>
</tr>
<tr>
<td></td>
<td>4)</td>
<td>TTG TAA GCT CTT TAA CTG AAT</td>
<td>611–591</td>
</tr>
<tr>
<td></td>
<td>5)</td>
<td>ATT GCC GCA TTA GTC AC</td>
<td>2269–2253</td>
</tr>
<tr>
<td></td>
<td>6)</td>
<td>GAA TCA ATC CAA AGA AAC A</td>
<td>2417–2399</td>
</tr>
<tr>
<td>Expression</td>
<td>OspCBaA</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG ATG G</td>
<td>58–77</td>
</tr>
<tr>
<td></td>
<td>OspCBaATG</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG GTG G</td>
<td>58–77</td>
</tr>
<tr>
<td></td>
<td>OspCBgA</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG ATG G</td>
<td>58–77</td>
</tr>
<tr>
<td></td>
<td>OspCBgATG</td>
<td>CCG GAT CCA ATA ATT CAG GGA AAG GTG G</td>
<td>58–77</td>
</tr>
</tbody>
</table>

Underlining indicates BamHI and KpnI cleavage sites.
DNA sequencing

Plasmid DNA containing ospC inserts was isolated from E. coli with a QIAprep-spin plasmid kit (Qiagen). DNA sequencing with a DyePrimer (T7, M13Rev) cycle sequencing kit (Applied Biosystems, USA) was performed in accordance with the manufacturer's instructions by the Core Facility of the Haartman Institute, University of Helsinki. Sequencing reactions were run and analysed with an automated sequencing apparatus model 373A (Applied Biosystems). DNA and protein sequences were analysed with Lasergene software (DNASTAR, USA). To eliminate any errors caused by Taq polymerase, cloning and sequencing of the ospC genes were done twice.

Construction of the expression plasmid and expression of rOspC

The ospC constructs comprised the coding sequence of the mature protein. The PCR products were cloned into the pCR 2.1-TOPO vector. After digestion of the purified pCR 2.1-TOPO plasmid with BamHI and KpnI, the cleaved ospC was ligated with T4 ligase into the similarly cut pQE-30 expression plasmid (Qiagen) that adds an N-terminal 6-histidine tag to the protein. The ligation mixture was used to transform E. coli M15 host cells, as described in the manufacturer's instructions (Qiagen). The transformation mixture was plated on to Luria-Bertani agar containing ampicillin 100 µg/ml and kanamycin 25 µg/ml. A primary culture for expression of the rOspC was started by inoculating 50 ml of Luria-Bertani broth containing antibiotics as above with a single colony from a fresh transformant plate. The culture was incubated overnight at 37°C with shaking. This starter culture was diluted 1 in 100 to 1500 ml with Luria-Bertani broth containing antibiotics as above and incubated at 37°C for 3 h (growth reached the mid-log phase; the OD600 was c. 0.6). Isopropyl-β-D-thiogalactoside (Calbiochem, USA) was added to a final concentration of 0.6 mM, and the culture was incubated for a further 3 h. The harvested, washed and sonicated. The expressed rOspC was subsequently eluted from the column with 0.16 M imidazole eluting buffer. Protein expression and purity were confirmed by SDS-PAGE.

Purification of rOspC and measurement of rOspC concentration

rOspC'Ss originating from strains ia, A91 or 40 (referred to as rOspCia, rOspC_A91 or rOspC_40) were dialysed in 10 mM dianisomopropionate-HCl, pH 8.8, before purification by chromatography, in which protein was purified on to a Poros HQ 20 column (PerSeptive Biosystems, USA) equilibrated with 10 mM dianisomopropano, pH 9.2. A buffer gradient to 1 M NaCl–100 mM Tris-HCl, pH 8.0, was used for elution.

Fractions containing the protein were further purified by hydrophobic interaction with Butyl-Sepharose (Amersham Pharmacia) by loading at 1.2 m Na2SO4, followed by elution with a gradient to water. Protein purity was confirmed by SDS-PAGE. The concentration of rOspC was measured with the high-performance gel-permeation chromatography method in a Fractogel EMD column (Merck, Darmstadt, Germany) that monitors UV absorption at 220 nm [24], with bovine serum albumin (BSA) as reference. This method was used because of the shortage of aromatic amino acids in OspC.

Biotinylation of rOspC

The purified rOspC proteins from the three strains were biotinylated with ImmunoPure-NHS-Long chain biotin (Pierce, USA), which, dissolved in NN-dimethylpiperidim, was added to the purified rOspC protein and to Na2CO3, and rotated overnight at room temperature. The final concentrations of OspC, biotin and Na2CO3 were 0.6 mg/ml, 0.15 mg/ml and 0.02 M, respectively. Further purification and removal of free biotin was done with gel-permeation chromatography on a Superose 12 column (Amersham Pharmacia) in 0.1 M Na2SO4.

ELISA

For rOspC, ELISA microtitration plate wells were coated with recombinant streptavidin (Boehringer Mannheim, Mannheim, Germany) 0.5 µg/ml in PBS overnight at 4°C. With intervening washes, the following reagents were sequentially incubated on the plates: biotinylated rOspC (30 ng/well) in BSA (5 mg/ml) in 155 mM NaCl-Tween 20 0.04% buffer (BSA-NaCl-Tween) for 2 h at room temperature, serum samples at 1 in 200 dilution in BSA-NaCl-Tween or in 0.1 M Na2SCN-BSA-NaCl-Tween overnight at 4°C, alkaline phosphatase-conjugated rabbit anti-human IgM or IgG (Jackson Immuno Research Laboratories, USA) at 1 in 5000 dilution in BSA-NaCl-Tween for 2 h and 4-nitrophenylphosphate (Boehringer Mannheim GmbH) substrate in 0.1 M diethanolamine-1 mM MgCl2 buffer, pH 10.0, for 30 min. The absorbance at 405 nm was measured with a Multiscan photometer (Thermo Labsystems, Helsinki, Finland).

IgM and IgG antibodies against borrelial flagella from B. afzelii DK1 were measured with a commercial flagella-based ELISA kit (Dako, Glostrup, Denmark) modified by using end-point titration of the antibodies, as described earlier [25]. Briefly, sera were diluted serially in three-fold steps for the test and applied to the plates for overnight incubation. The bound antibodies were detected with biotin-labelled goat anti-human IgM or IgG (Jackson Immuno Research Laboratories, USA) at 1 in 5000 dilution in BSA-NaCl-Tween for 2 h and 4-nitrophenylphosphate (Boehringer Mannheim GmbH) substrate in 0.1 M diethanolamine-1 mM MgCl2 buffer, pH 10.0, for 30 min. The absorbance at 405 nm was measured with a Multiscan photometer (Thermo Labsystems, Helsinki, Finland).
Patients

Human serum samples were collected from patients with typical LB, i.e., primary erythema migrans (EM), neuroborreliosis (NB) or Lyme arthritis (LA). In all the patients, the diagnosis of LB was based on the clinical guidelines for diagnosis set out by the Centers for Disease Control and Prevention (CDC; Atlanta, GA, USA) [26]. The clinical diagnoses of NB and LA were confirmed by demonstrating antibodies in the sera by ELISA against WCL from B. afzelii strain SK1 (in-house preparation) and flagella, and, in patients with NB, by demonstrating antibodies to flagella in the cerebrospinal fluid [27]. In all patients with EM, the diagnosis was confirmed by culturing B. burgdorferi (13 B. afzelii and 4 B. garinii) from a skin biopsy in BSK-H medium with rifampicin 50 μg/ml, phosphomycin 20 μg/ml and amphotericin B 2.5 μg/ml (Sigma). Controls were serum samples from patients with syphilis, Epstein–Barr virus (EBV) infection, rheumatoid factor (RF) positivity, antistreptolysin O (ASO) positivity, high Salmonella or Yersinia enterocolitica antibody titres with positive stool culture, clinically and serologically verified systemic lupus erythematosus (SLE), and samples from healthy blood donors.

Nucleotide sequence accession numbers

 ospC sequences from the B. burgdorferi sensu stricto strain ia, B. afzelii A91 and B. garinii 40 have been assigned to the GenBank database with accession numbers AF501316, AF501318 and AF501317, respectively. Accession numbers of published ospC sequences used in comparison were X62162 (PKo), X81523 (PLj7), X69594 (PBr), X69593 (TN), X69595 (PBl), X83555 (B. pacificus), X69596 (B31), X81524 (T255), L42893 (297), X81522 (PBre), X80255 (Ple), X83552 (Plud), X83556 (N34), X69592 (T25), X81526 (WABSou), L42892 (ACA1), L42869 (W), X84777 (DK9) and X83553 (Phei).

Statistical analysis

The Microsoft Excel 2000 program (Microsoft, USA) and Statview 4.5 program (Abacus Concepts, USA) were used for calculations of standard statistics. The coefficient of variation (CV) percentage was determined by dividing the SD of the OD values by the mean.

Results

Nucleotide and protein sequence analysis of OspC

The identity of the ospC nucleotide sequences between the Finnish strains ia, A91 and 40 was 76–81%. The deduced amino acid sequences were 67–73% identical (Fig. 1). When the three amino acid sequences were compared with each other, four amino acid deletions were observed in the OspC sequences of both B. burgdorferi ia and B. garinii 40, and three in B. afzelii A91. These deletions were distributed in different parts of the molecules, but so that three of them in strain ia, three in strain A91 and one in strain 40 were in the hypervariable regions of OspC [18]. The C-terminal peptide in OspCia differed from the immunogenic C-terminal decapptide PVVAESPKKP described by Mathiesen et al. [13] by one amino acid: serine was replaced with threonine. In OspCia and OspCaA91, this region was identical with the decapptide above. In all, 30–33% of the deduced amino acids were hydrophobic, although the number of aromatic amino acids, which are usually hydrophobic, was low. OspCia and OspCiaA91 contained two phenylalanines, and OspCiaA91 contained three phenylalanines. Only OspCiaA91 had one tyrosine, and tryptophane was not present in any of the proteins. One cysteine was present in all three proteins, and there were three, two and four histidines in OspCia, OspCaA91 and OspCiaA91, respectively. The calculated iso-electric points of the mature non-acylated forms of OspCia, OspCaA91 and OspCiaA91 were 7.96, 8.33 and 7.16, respectively.

Fig. 1. Comparison of OspC sequences with close homology: the mature proteins of B. burgdorferi sensu stricto strain ia (Bbia), B. afzelii A91 (BaA91) and B. garinii 40 (Bg40), and B. afzelii strains Ple and DK9, and B. garinii strains WABSou and Phei. Boxes indicate amino acid heterogeneity.
The sequences encoding the mature proteins of the three OspCs were compared with the OspC sequences of the 16 OspC serotypes established by Wilke et al. [20], except for strain Pstm, which was not found in the GenBank database. Among these strains, OspC of B. afzelii Pst showed 98.4% identity with OspC_{BaA91} and B. garinii WABSou showed 99.5% identity with OspC_{Bgg40} at the protein level. The OspC sequence of B. afzelii ACA1 was identical with OspC_{BaA91}, the OspC of B. garinii W was identical with OspC_{Bgg40}, and the OspC of B. burgdorferi sensu stricto B31 was identical with OspC_{Bmax}. OspC sequences with close homology are shown in Fig. 1. The published sequence of the OspC of B. afzelii PLE in the GenBank database lacks the last amino acid and B. garinii DK9 lacks the last seven and the eight first amino acids.

IgM ELISA
Agents known to dissociate inter-protein interactions were tested to improve the binding specificity of IgM class antibodies in the rOspC ELISA. The ability to differentiate LB from other diseases was monitored in experiments with urea, guanidine or thiocyanate as ingredients in the sample application buffer (data not shown). In preliminary experiments with a small number of sera, the last agent, chosen in the light of a report by McCloskey et al. [28] in which thiocyanate was shown to inhibit binding of antibodies, was promising. Several concentrations of NaSCN (0.1–2 M) were tested. The best discrimination between LB patient sera and EBV samples (false positives) was observed with 0.1 M NaSCN (data not shown). No such effect was observed with NaSCN when flagella was used as the antigen (data not shown). Depending on the rOspC used, the change in the OD values with or without NaSCN varied; however, with all the rOspCs, the effect was significantly greater with EBV than with flagella. Several concentrations of NaSCN (0.1–0.5 M) were tested to improve the binding specificity of IgM class antibodies in the rOspC ELISA. The total CV was 10.3% when determining the CV of the OD values in three separate ELISA experiments. The reproducibility of the test was evaluated by determining the CV of the OD values in three separate ELISA experiments. The total CV was 10.3% when NaSCN was used and 7.9% when NaSCN was present. Thus, NaSCN seemed not only to decrease the non-specific reactions, but also to improve the CV. No clear difference was seen in the CVs of the various patient groups.

IgG ELISA
The same serum samples that were used in IgM ELISA were tested in IgG ELISA. Control serum samples from patients with high salmonella or yersinia antibody titres and positive stool cultures, and ASO-positive serum samples were also analysed. Of the 17 concentrated samples from patients at the acute phase of EM, five reacted

Table 2. Positive IgM ELISA results with rOspC or flagella antigen

<table>
<thead>
<tr>
<th>Antigen</th>
<th>NaSCN buffer</th>
<th>EM1 (n = 17)</th>
<th>EM2 (n = 17)</th>
<th>NB (n = 15)</th>
<th>LA (n = 15)</th>
<th>SY (n = 10)</th>
<th>EBV (n = 15)</th>
<th>RF+ (n = 10)</th>
<th>SLE (n = 10)</th>
<th>BD (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rOspC</td>
<td>–</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>rOspC</td>
<td>+</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Flagella</td>
<td>–</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

rOspC refers to the total number of patients in each group with antibodies to one or more of the rOspC proteins with or without NaSCN in sample buffer. Serum samples were from patients with erythema migrans at the acute phase (EM1), erythema migrans at the convalescent phase (EM2), neuroborreliosis (NB), Lyme arthritis (LA), syphilis (SY), EBV infection (EBV), rheumatoid factor positivity (RF+), or systemic lupus erythematosus (SLE), and from blood donors (BD).
with one or more of the rOspCs (29%), 6 (35%) of the 17 EM patients at the convalescent phase, 5 (33%) of 15 with NB, 9 (60%) of 15 with LA, 1 of 10 with syphilis, 0 of 10 with salmonella-positive samples, 1 of 10 with yersinia antibodies, 2 of 10 patients with ASO positivity, 1 of 10 with RF positivity, 3 of the 10 SLE patients and 1 of the 19 healthy blood donors. Of the rOspC proteins, rOspC_{Baa91} most frequently detected anti-OspC antibodies (Fig. 3).

The same serum samples were tested with flagella IgG ELISA. Four (23%) of the 17 samples from patients at both the acute and convalescent phase of EM, 14 (93%) of the 15 NB patient samples, 15 (100%) with LA, 1 of 10 with syphilis, 1 of 10 with salmonella infection, 0 of 10 with yersinia infection, 1 of 10 with ASO positivity, 0 of 10 with RF positivity, 0 of 10 with SLE and 1 of 19 blood donor samples were positive.

Anti-OspC antibodies during the post-treatment period

In 17 LB patients differences in the antibody responses to OspC and flagella were evaluated with paired sera at the acute (at diagnosis) and convalescent phases. The convalescence samples were taken 1–6 months after treatment. This group included 3 patients with EM, 10 with NB and 4 with LA. All the patients had LB diagnoses based on the CDC guidelines [26], 15 of the 17 patients had high anti-flagella IgM antibodies at the acute phase, and all 17 patients had high anti-flagella IgG antibodies at the convalescent phase (Table 3). In

Fig. 2. IgM ELISA results with OspC proteins from *B. afzelii* (A91) (a and b), *B. garinii* (40) (c and d) and *B. burgdorferi sensu stricto* (e) and (f), as antigens. The OD/cut-off values are shown without (NaSCN−) and with (NaSCN+) sodium thiocyanate. The OD/cut-off values from three distinct ELISA experiments for each patient and control sample are averaged. Serum samples were from patients with erythema migrans at the acute phase (EM1), erythema migrans at the convalescent phase (EM2), neuroborreliosis (NB), Lyme arthritis (LA), syphilis (SY), Epstein–Barr virus infection (EBV), rheumatoid factor positivity (RF+) or systemic lupus erythematosus (SLE), and from healthy blood donors (BD). The level of positivity for OD/cut-off values (>1) is indicated by a horizontal line.
IgM ELISA with NaSCN-BSA buffer, 12 (71%) of the 17 patients were positive with one or more of the rOspCs at the acute phase. Of the rOspCs, rOspCBaA91 evoked a positive reaction most frequently (Table 3), although in IgM ELISA immunoreactivity toward two or three of the rOspCs was often seen. In the convalescent phase, nine patients had retained and one gained IgM antibody positivity toward flagella. There were two seroreversions and two seroconversions toward rOspCs.

IgG ELISA was also performed for the same 17 paired serum samples. Nine (53%) of the 17 patients had positive reactions with one or more of the rOspCs in the acute phase, and 13 (76%) of 17 in the convalescent phase (Table 3). The majority of positive immunoreactions were against rOspCBaA91, 9 of 17 in the acute phase and 12 of 17 during the convalescent phase. In the convalescent phase, one serum sample was positive for rOspCBg40 only; otherwise, rOspCBaA91 would have covered the antibody responses in rOspC IgG ELISA.

Discussion

This study showed that in serological assays, the abilities of rOspC and flagella to detect IgM antibodies during early LB were comparable. With both antigens, IgM serology is complicated by false-positive reactions, a frequent problem with IgM antibodies in general. The results of the present study suggest that NaSCN may be able to decrease non-specific immunoreactivity and, thus, to improve the IgM serodiagnosis. In contrast, the sensitivity of OspC IgG serology remained lower than that of the conventional flagella antigen, even though the various OspCs covered all three pathogenic species in the antigen panel. Most probably, the results reflect the high sequence heterogeneity of OspC.

In the early stages of LB, antibodies against borrelial proteins are observed in only a small proportion of patients [3]. In the present study, OspC ELISA was compared with flagella ELISA, because the performance of this method has been at the same level as that of other commercially available ELISA methods [29]. In the EM serum samples, sensitivity and specificity of rOspC seemed to be approximately equal to those of the flagella antigen. The results of the present study suggest that NaSCN may be able to decrease non-specific immunoreactivity and, thus, to improve the IgM serodiagnosis. In contrast, the sensitivity of OspC IgG serology remained lower than that of the conventional flagella antigen, even though the various OspCs covered all three pathogenic species in the antigen panel. Most probably, the results reflect the high sequence heterogeneity of OspC.
A prominent feature of IgG serology was the predominance of IgG immune reactions against OspC from *B. afzelii*. The high prevalence of *B. afzelii* in Scandinavia may account for this finding [23]. In published studies, the proportion of positive samples against single recombinant OspC has varied between 5% and 42% early in the disease [4–6, 9, 14] and between 6% and 51% in disseminated disease [4, 6]. The findings in the present study concur with these results, showing 6–35% positive results in the acute phase and 18–53% in the convalescent phase of LB, depending on the various rOspC antigens employed. It is likely that maturation of the IgG immune response with time would direct the specificity of the antibodies preferentially toward epitopes of the immunising strain. Fung et al. [4] found an IgG response in rOspC ELISA (rOspC from *B. burgdorferi sensu stricto* strain 297T) in chronic LA patients but less frequently in chronic NB patients. In keeping with these results, in the present rOspC IgG ELISA, the patients with LA had antibodies more frequently than the patients with EM or NB. This may have been due to the more chronic stage of the disease in LA than in EM or NB.

The present study used an ELISA with streptavidin-coated plates and rOspC bound to it via a biotin tag. This procedure improved the binding of rOspC to the ELISA plate surface (data not shown). Alternatively, Wienecke et al. [9] successfully used covalent coupling of rOspC to plastic. The poor binding of the rOspC constructs to plastic for the present study may be associated with the low content of aromatic amino acids in OspC. Similarly, weak binding of OspC to nitrocellulose WCL immunoblot strips in the presence of SDS in the transfer buffer was observed (data not shown).

In conclusion, this study implies that, depending on the epidemiological situation, all pathogenic borrelial species should be covered if OspC antigens are employed in the serology of LB. We suggest that in the European context, on account of the heterogeneity of OspC, a polyclonal antigen with several OspC variants from at least *B. afzelii* and *B. garinii* is needed to improve the serodiagnosis of LB.

We thank Dr Klaus Hedman for providing the EBV serum samples, Dr Matti Viljanen for donating the strains of *B. burgdorferi sensu lato* used in this study, and Drs Heikki Julkunen and Aaro Miettinen for the use of the English language by MS Jean Margaret Pelttari. This study was supported by grants from the National Technology Agency (Tekes), Helsinki, Finland; Helsinki Central Research Funds; the Clinical Research Institute of Helsinki University Central Hospital; the Paulo Foundation and Finska Läkaresällskapet, Helsinki, Finland.

References

