ANTIMICROBIAL AGENTS

A comparison of the bactericidal activity of quinolone antibiotics in a Mycobacterium fortuitum model

STEPHEN H. GILLESPIE, IAN MORRISSEY* and DEAN EVERETT

Royal Free & University College Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF
and *GR Micro Ltd, 7–9 William Road, London NW1 3ER

New agents are urgently needed to meet the threat of multiple drug-resistant tuberculosis and to manage infection with the naturally resistant non-tuberculosis mycobacteria. Earlier fluoroquinolones have been shown to have promising in-vitro activity, although mouse infection and clinical studies suggested that they lack sufficient bactericidal activity. Methods were evaluated to measure the bactericidal activity of fluoroquinolones and to compare the new agent moxifloxacin with other fluoroquinolones with M. fortuitum as a model system. The optimum bactericidal concentrations (OBC) for the fluoroquinolones were: moxifloxacin, 0.5 mg/L; ciprofloxacin and sparflaxacin, 2 mg/L and ofloxacin, 8 mg/L. The bactericidal indices (BI) for moxifloxacin, ciprofloxacin, sparflaxacin and ofloxacin were 1.8, 0.5, 0.2 and 0.2, respectively. Similar ranking was obtained when the time taken to produce one log_{10} reduction in viable count was calculated. These data indicate that moxifloxacin was the most bactericidal of the fluoroquinolones tested. Such methods provide a simple in-vitro measure that correlates with in-vivo models.

Introduction

Mycobacterial infection is a significant threat to human health and the total number of cases of tuberculosis is rising throughout the world [1]. Multiple drug resistance is also becoming more common and recent outbreaks of multiple drug-resistant tuberculosis among HIV seropositive individuals have been associated with a high mortality and rapid transmission [2]. The incidence of non-tuberculosis mycobacteria is also rising because of an increase in the number of immunocompromised patients, including HIV seropositive individuals, together with improved diagnostic facilities and better understanding of the pathogenesis of these organisms [3].

The fluoroquinolones are a group of potent bactericidal antibacterial agents that target DNA gyrase [4]. Earlier compounds were mainly active against gram-negative pathogens, but the fluoroquinolones, such as ciprofloxacin, had an increased potency against gram-negative pathogens and a wider spectrum that included staphylococci and mycobacteria. Fluoroquinolones have been shown to have anti-mycobacterial activity in vitro [5, 6] and mouse models of infection [6, 7] show that ciprofloxacin has early bactericidal activity, rapidly reducing the sputum viable count [8]. Clinical trials support the idea that they may have a role to play in the treatment of these infections [9, 10].

Developments in the quinolone family have produced agents with enhanced activity against gram-positive organisms and mycobacteria. Studies of substitutions at the C8 position of the quinolone ring suggested that a methoxy group enhanced the anti-mycobacterial activity of quinolones when the position had a cyclopropyl substitution at the N1 position [11, 12]. Moxifloxacin is an 8-methoxyquinolone that is being introduced into clinical practice especially for the treatment of respiratory tract infections. It has enhanced activity against gram-positive pathogens and anaerobes while retaining useful activity against gram-negative organisms [13]. It has been shown to inhibit the growth of the main species of mycobacteria that infect man [14]. Studies of the activity of moxifloxacin in mouse models also suggest that it has important bactericidal activity [7]. Bactericidal activity of antibiotics has been shown to be important early in the course of treatment by ensuring a rapid reduction in the infective load and

Corresponding author: Professor S.H. Gillespie (e-mail: stephen@rfc.ucl.ac.uk).
later in killing semi-dormant organisms to stabilise the lesions [9, 15]. In a controlled trial of a regimen containing ciprofloxacin against standard therapy, patients who were HIV seropositive took longer to achieve sterilisation and had a higher relapse rate [8]. This study suggested that ciprofloxacin lacked sterilising activity in comparison with the standard regimen, and that if quinolone antibiotics are to have a role in anti-tuberculosis therapy, agents with enhanced bactericidal activity must be found. In non-tuberculous mycobacterial infections, bactericidal activity is essential as these infections often arise in patients with reduced cell-mediated immunity, where little help in eradicating the organism can be expected from the immune system [3].

Most studies of anti-mycobacterial activity of new drugs are reported in the form of the minimal inhibitory concentration (MIC). A more relevant measure of potential usefulness would be in-vitro measures of the bactericidal activity [8, 9, 15]. To develop such a method conventional measures of bactericidal action were adapted to mycobacteria in a Mycobacterium fortuitum model system. The minimum bactericidal concentration (MBC) and the optimum bactericidal concentration (OBC), the most lethal fluoroquinolone concentration over a range of concentrations) were measured. The bactericidal index (BI) was also calculated to relate bactericidal activity with antibiotic concentrations achievable in serum. With this, the bactericidal activity of the new 8-methoxyquinolone was compared with that of older agents and the utility of different measures of bactericidal activity in mycobacteria was evaluated.

Materials and methods

Drugs and mycobacterial test strain

The antibacterial agents were obtained from the respective manufacturers. Moxifloxacin (Bayer AG, Wuppertal, Germany) and sparfloxacin (Rhône-Poulenc Sante, France) were dissolved in 0.1 M NaOH then diluted in sterile distilled water. Ciprofloxacin (Bayer AG) and ofloxacin (Aventis, Romainville, France) were dissolved in sterile distilled water. The test strain for all experiments was M. fortuitum NCTC 10394.

Macrodilution sensitivity testing

The macrodilution method described previously [16] was used to determine the MIC, which was defined as the lowest concentration at which there was no visible growth. The MBC was defined as the lowest concentration that produced a 99.9% reduction in viable count. The method was modified by increasing the recommended incubation period to 48 h and the use of Mueller Hinton Broth (MHB; Mast Diagnostics, Bootle) with Tween 80 (BDH, Poole, Dorset) 0.2% and albumin dextrose catalase complex (ADC; Becton Dickinson, Oxford) 10%.

Determination of the OBC

Four volumes of 45 ml of MHB with ADC 10% and Tween 80 0.2% were inoculated and incubated for 48 h at 37°C, to give an initial inoculum of 10^7–10^8 cfu/ml. The culture was centrifuged at 12 000 g for 1 min and the supernate was discarded. Pellets were resuspended in 10 ml of MHB containing ADC and Tween. The concentrations tested were: MIC × 0.25, × 0.5, × 1, × 2, × 4, × 8, × 16, × 32. Sterile distilled water (0.1 ml) was added to each of the control flasks. A 0.1-ml sample from the control flasks was serially diluted to 1 in 10^3 to determine the initial viable count (t = 0). The flasks were incubated on a rotary shaker (100 rpm) at 37°C for 6 h, when a second viable count was taken.

To reduce the risk of carry over of antibiotic, the broth cultures were centrifuged and the supernate was discarded before serial dilutions were used to perform viable counts by the Miles and Misra method [17] with duplicate spots of 25 µl for dilutions of 1 in 10^2 to 1 in 10^7. The plates were then incubated for 48 h at 37°C. The results are expressed as percentage survivors.

BI

The data obtained from viable count studies were re-evaluated by calculating the BI as described previously [18]. Briefly, the log_{10} reduction in cfu was plotted against the log_{10} concentration of the fluoroquinolone being used. The area under the curve (AUC) for the bactericidal section of each plot was determined and this was defined as the BI for each drug. The highest concentration used for each calculation was the peak serum concentration (C_{max}) as shown in Table 1 [19, 20].

Death rates

The data were also re-calculated to give figures on time taken to achieve one log_{10} death of M. fortuitum against each fluoroquinolone, for each concentration

<table>
<thead>
<tr>
<th>drug</th>
<th>single oral dose (mg)</th>
<th>C_{max} (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moxifloxacin</td>
<td>800</td>
<td>4.73</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>750</td>
<td>3.4</td>
</tr>
<tr>
<td>Sparfloxacin</td>
<td>400</td>
<td>2</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>400</td>
<td>7.17</td>
</tr>
</tbody>
</table>
used. This was calculated by a method published previously [21]. Briefly, the formula used to calculate the death rate was \(D = t/\log_{10} N_0 - \log_{10} N_t \), where \(D \) = the death rate, \(t \) = the relevant time, \(N_0 \) is the initial viable count at \(t = 0 \) and \(N_t \) is the viable count at \(t \).

Results

Macrodilution MIC and MBC

The susceptibility of *M. fortuitum* to the fluoroquinolones as defined by MIC and MBC is shown in Table 2. The modal values were determined from six experiments.

OBC

The results expressed graphically in Fig. 1 are averages of six experiments for each fluoroquinolone after incubation for 6 h. The OBCs were calculated from the plots as follows: moxifloxacin 0.5 mg/L, ciprofloxacin and sparflxacin 2 mg/L and ofloxacin 8 mg/L. Results from 16-h investigations (data not shown) gave no clearly defined OBC as all concentrations exhibited a >99% drop in cfu/ml.

Table 2. Comparison of the MIC and MBC of fluoroquinolones against *M. fortuitum*

<table>
<thead>
<tr>
<th>Drug</th>
<th>Modal MIC (mg/L)</th>
<th>Modal MBC (mg/L)</th>
<th>MIC/MBC ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moxifloxacin</td>
<td>0.12</td>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.25</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Sparfloxacin</td>
<td>0.25</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 1. The OBC plots for moxifloxacin (○), sparflxacin (●), ciprofloxacin (□) and ofloxacin (■) over 6 h. Data points represent the mean of six observations.

B1

Fig. 2 shows plots of the log_{10} reduction in viability against the log_{10} of the drug concentration after 6 h. The log_{10} reduction values for C_{max} were taken from Table 1. This was the cut-off point for AUC calculations as shown in Fig. 2. The BI were calculated to be 1.8 for moxifloxacin, 0.5 for ciprofloxacin, 0.2 for sparflxacin and 0.2 for ofloxacin.

Death rates

The results are presented in Table 3 and these correspond to the time the concentrations would take to produce one log_{10} death at differing concentrations.

Discussion

The results clearly show that the fluoroquinolones used in this investigation were all bactericidal with MIC/ MBC ratios of 2. MIC and MBC results for three of the fluoroquinolones were similar to those published previously [22]. With this method of evaluation, the activity of moxifloxacin is similar to the older compounds.

The biphasic nature of quinolone action described in other organisms was less marked in these experiments with the exception of ciprofloxacin, which gave the most clearly defined OBC. It has been proposed that the biphasic nature of fluoroquinolone bactericidal profiles is a consequence of inhibition of RNA synthesis at high fluoroquinolone concentration [23, 24]. This is thought to occur because fluoroquinolones require RNA synthesis for full bactericidal activity; therefore, this biphasic phenomenon is due to self-antagonism. Fluoroquinolones vary in their reliance on RNA synthesis for killing. Older quinolones such as nalidixic acid are devoid of bactericidal activity if RNA synthesis is inhibited, because they can kill only by the mechanism classified as type A [24]. On the other hand, newer quinolones can still exert bactericidal activity under RNA synthesis inhibition if they possess the type B and B₂ bactericidal mechanism [24]. However, the action of ciprofloxacin against *M. smegmatis* and *M. bovis* BCG could be partially blocked by pre-treatment with chloramphenicol, a potent inhibitor of protein synthesis [25]. It was also blocked by very high concentrations of ciprofloxacin, as in the present study. Recently, it has been shown that with increasing concentrations of ciprofloxacin, there is a shift from a chloramphenicol-inhibited to chloramphenicol-insensitive mode of killing [26] and it is thought unlikely that inhibition of RNA synthesis would affect a process independently of protein synthesis. The data presented in Fig. 1 shows a weak biphasic pattern, suggesting that moxifloxacin, sparflxacin and ofloxacin exhibit type B killing against *M. fortuitum*. Ciprofloxacin may exert its bactericidal
Fig. 2. Plots of the log_{10} reduction in cfu against the log_{10} of drug concentration for moxifloxacin (a), ciprofloxacin (b), spiramycin (c) and ofloxacin (d). The data points represent the mean of six observations. AUCs were determined for the region of each plot dissected by the vertical and horizontal dotted lines, which are the log_{10} C_{max} and bactericidal point, respectively.

Table 3. Comparison of the rate of killing (death rate) for four fluoroquinolones against M. fortuitum

<table>
<thead>
<tr>
<th>Antibiotic concentration (mg/L)</th>
<th>Time (h) to produce one log_{10} reduction in viable count with</th>
<th>moxifloxacin</th>
<th>ciprofloxacin</th>
<th>spiramycin</th>
<th>ofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.12</td>
<td></td>
<td>200</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td>2.9</td>
<td>300</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>3.9</td>
<td>5.7</td>
<td>46.2</td>
<td>ND</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>4.1</td>
<td>5.3</td>
<td>11.5</td>
<td>ND</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td>4.4</td>
<td>7.9</td>
<td>7.9</td>
<td>66.7</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td>5.6</td>
<td>12.1</td>
<td>9.4</td>
<td>15.4</td>
</tr>
<tr>
<td>8.0</td>
<td></td>
<td>ND</td>
<td>7.5</td>
<td>8.7</td>
<td>9.5</td>
</tr>
<tr>
<td>16.0</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>10.9</td>
</tr>
<tr>
<td>32.0</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>13.4</td>
</tr>
<tr>
<td>64.0</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>13.6</td>
</tr>
</tbody>
</table>

ND, not determined.
activity by a type A mechanism because the biphasic nature of the response is more pronounced. Further-
more, as the OBCs became less pronounced at 16 h compared with 6 h, this suggests that mechanisms B or
B1 may act more slowly than mechanism A against M. fortuitum. Further studies are required to evaluate this
more fully.

It has been suggested previously that the potency of the fluoroquinolones can be compared by reference to the
OBC value measured after 6 h [23]. This method was adapted for use in mycobacteria. The data indicate that
moxifloxacin has the lowest OBC value (0.5 mg/L), suggesting that it is more bactericidal than the compa-
paritors sparfloxacin (2 mg/L), ciprofloxacin (2 mg/L) and ofloxacin (8 mg/L). After 16 h, >99% of the
bacteria were killed by all of the fluoroquinolones with no discernable difference in the OBC. This difference
can be important when the plasma half-lives of the drugs are taken into consideration. If the fluoroquino-
lonene possesses a short half-life, the OBC is an important factor because the optimum kill rate would be
desirable, if time were limited. However, if the fluoroquinolone possessed a long half-life the OBC
would be less relevant. The drug would persist for longer, thereby allowing more time for bactericidal
killing to occur. This could have a direct relevance to once-daily dosing in tuberculosis regimens, thereby
allowing for a more manageable drug course to be administered, which would aid patient compliance.

The results show that moxifloxacin was approximately twice as bactericidal as ciprofloxacin and almost 10 times
more bactericidal than both sparfloxacin and ofloxacin as defined by BI. Ciprofloxacin and spar-
floxacan were more active than ofloxacin and cipro-
fluoxacan was more bactericidai than sparfloxacin. The low AUC value and correspondingly low bactericidal
area displayed by sparfloxacin (0.3) may be due to the fact that this fluoroquinolone is widely distributed into
the tissues of the patient, rather than remaining in the
serum [27]. The analysis of killing rates concurred with the BI data indicating that moxifloxacin is more
bactericidal than the other fluoroquinolones tested.

This study adopted previously described methods of
determining OBC, death rates and BI to use with
mycobacteria. The results suggest that this approach is
valuable and correlates well with in-vivo studies that
show that moxifloxacin is more bactericidal than sparfloxacin [7]. If a conventional MIC/MBC approach
had been used, the superior bactericidal activity of moxifloxacin over sparfloxacin would not have been
demonstrated.

In conclusion, with the incidence of drug-sensitive and
drug-resistant tuberculosis steadily increasing on a
global scale, moxifloxacin shows a great deal of promise in the future management of mycobacterial
infections. New quinolones with potential activity

against mycobacteria should be tested in vitro by
the methods described in this paper, as this will provide a
more accurate measure of bactericidal activity. Further
study of the bactericidal activity of fluoroquinolones is
required in M. tuberculosis and other slow-growing
species and this will allow the most promising new
agents to be selected for clinical studies.

This study was supported by a grant from Bayer AG. We thank Professor Christian N. Ruhland for his critical reading of
this manuscript and Therese Donnelly for secretarial assistance.

References

World Health Organization. International Union against Tuber-
culosi and Lung Disease Working Group on Anti-Tuberculosis
2. Fischl MA, Utamchandani RB, Diakos GL et al. An outbreak
of tuberculosis caused by multiple-drug-resistant tubercle bacilli
AM, Hawkey PM, Gilpin SM (eds) Principles and practice of
clinical bacteriology. Chichester, John Wiley and Sons.
4. Drlica K, Zhao X. DNA gyrase, topoisomerase IV, and the
5. Garcia-Rodriguez JA, Gomez Garcia AC. In-vitro activities of
quinolones against mycobacteria. J Antimicrob Chemother
6. Ji B, Lounis N, Trudft-Pernot C, Grossot J. In vitro and in
vivo activities of levofloxacin against Mycobacterium tubercu-
7. Miyazaki E, Miyazaki M, Chen JM, Chaisson RE, Bishai WR.
Moxifloxacin (BAY 12-8013), a new 8-methoxyquinolone, is
active in a mouse model of tuberculosis. Antimicrob Agents
Chemother 1998; 42: 85–89.
8. Kennedy N, Fox R, Kuyimbo GM et al. Early bactericidal and
sterilising activities of ciprofloxacin in pulmonary tuberculosis.
trial of a drug regimen that includes ciprofloxacin for the
827–833.
relationships of quinolone agents against mycobacteria: effect
of structural modification at the 8 position. Antimicrob Agents
relationships of the quinolone antibacterials against mycobac-
teria: effect of structural changes at N-1 and C-7. J Med Chem
13. Woodcock JM, Andrews JM, Bossell, Fl, Brennan NP, Wise
R. In-vitro activity of BAY 12-8039, a new fluoroquinolone.
14. Gillespie SH, Billington O. Activity of moxifloxacin against
15. Mitchison DA. The action of antituberculous drugs in short-
16. Heifets L. Susceptibility testing of Mycobacterium avium
complex isolates. Antimicrob Agents Chemother 1996; 40:
1759–1767.
17. Miles AA, Miura SS. The estimation of the bactericidal power
18. George J, Morrissey T. The bactericidal activity of levofloxacin
compared with ofloxacin, D-ofloxacin, sparfloxacin and cefi-
taxime against Staphylococcus pneumoniae. J Antimicrob Che-
19. Stass H, Daehoff A, Kuhira D, Schuh D. Pharmacokinetics,
safety, and tolerability of ascending single doses of moxiflo-

BACTERICIDAL ACTIVITY OF QUINOLONES 569

Downloaded from www.microbiologyresearch.org by
IP: 54.70.40.11
On: Tue, 23 Oct 2018 20:42:24

