MOLECULAR EPIDEMIOLOGY

Genotypic variations of Shiga toxin-converting phages from enterohaemorrhagic Escherichia coli O157: H7 isolates

RO OSAWA, SUNAO IYODA*, SHU-ICHI NAKAYAMA*, AKIHITO WADA*, SHIRO YAMAI and HARUO WATANABE*

Department of Bacteriology and Pathology, Kanagawa Prefectural Public Health Laboratory, Nakao-cho, A善
ku, Yokohama and *Department of Bacteriology, National Institute of Infectious Diseases, Toyama, Shinjuku-
ku, Tokyo, Japan

Pulsed-field gel electrophoresis (PFGE) analysis revealed that enterohaemorrhagic Escherichia coli (EHEC) O157:H7 strains had considerable variations in their genomes. This study investigated whether or not the molecular profile of Shiga toxin (Stx) 1- and Stx2-converting phages isolated from EHEC O157:H7 strains, derived from various sources in the USA and Japan, corresponded to the variations of host strains' genotypes as determined by PFGE. A total of 51 Stx-converting phages including 12 Stx1-converting phages and 37 Stx2-converting phages was isolated from seven USA isolates and 20 Japanese isolates. The average Dice coefficient values showed 44% similarity between phage DNAs in Stx2-converting phages digested with Smal and 55% in Stx1-converting phages digested with HindIII, indicating considerable variation among phage DNA. In particular, restriction fragment length polymorphism (RFLP) patterns of Stx2-converting phage DNA varied according to the PFGE type of their host strain, which suggests that the phage genomes have altered their genotypic characteristics with those of host genomes. However, there are several exceptions: the RFLP patterns of some Stx2-converting phages were quite similar irrespective of the different genotypes of the host strains, indicating that horizontal transfer of Stx2-converting phage may also occur under some circumstances.

Introduction

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 has been increasingly recognised as a major food-borne pathogen that causes abdominal cramps, diarrhoea, haemorrhagic colitis and haemolytic-uraemic syndrome [1, 2]. Shiga toxin (Stx) produced by EHEC O157:H7 is considered to be a major virulence factor causing these clinical symptoms [3, 4]. Stx is presently classified into two broad types, Stx1 and Stx2 [3]. It has been well described that the structural genes encoding Stx1 and Stx2 (stx1 and stx2, respectively) are carried on bacteriophages, and are apparently transferred to the chromosomal DNA of host E. coli by lysogenisation of the phages [5–7] (referred to as Stx-converting phages hereafter). Rietra et al. [8] reported that Stx-converting phages derived from EHEC O157:H7 of human origin were all similar to each other in their DNA profiles (i.e., genome size, restriction endonuclease digestion and DNA–DNA hybridisation patterns), showing that the phage DNAs were very closely related. However, others [9, 10] have reported appreciable differences in size of fragments in EHEC O157 strains that hybridised with Stx gene probes, suggesting a possible heterogeneity among Stx-converting phages lysogenised in the host strains.

The first major outbreak of EHEC O157:H7 infection was reported in the USA in 1982, and was linked to eating undercooked ground beef from a fast-food restaurant chain [2, 11]. Since then, several outbreaks have been reported world-wide. In 1996, a series of multiple outbreaks and sporadic infections occurred in Japan [12]. To investigate possible epidemiological links between the outbreaks, an extensive molecular analysis was conducted on the outbreak-derived EHEC O157:H7
isolates by pulsed-field gel electrophoresis (PFGE). This grouped the isolates into various PFGE types (i.e., types I, II, III, IV and V) [13]. Therefore, it was of interest to determine whether or not the above outbreaks in the USA and Japan involved particular types of Stx-converting phages despite the fact that their host strains were genotypically different. The present study reports here on the molecular profiles of 51 Stx-converting phages that have been isolated so far from a total of 27 host bacterial strains belonging to various PFGE types, and relates the data to the hosts’ genotypes.

Materials and methods
Bacterial strains and PFGE typing
A total of 27 EHEC O157:H7 isolates were investigated (Table 1), including seven US isolates, two of which were from two hamburger meat-associated outbreaks in 1982 [2] and 1992–1993 [16], and the remaining 20 isolates were derived from the multiple outbreaks and sporadic infections that occurred in Japan in 1996 [12]. PFGE analysis with restriction endonuclease digestion by XhoI was performed as described previously [10].

Isolation of phage and preparation of phage DNA
The methods for isolation of the Stx-converting phages and preparation of phage DNA are described elsewhere [6], and either mitomycin C (Sigma) (2 µg/ml final concentration) or UV irradiation was used for phage induction. *E. coli* MC1061 [17], a strain of *E. coli* K12, was used as an indicator strain for plaque assay [6]. Phage isolation was repeated up to four times in some host strains so that multiple numbers of phages were obtained from each of the host strains.

stx profile

The presence of the stx gene in the host strains and in the isolated phages was confirmed by a PCR assay as described by Lin et al. [18], with common primers to detect genes for Stx1 (or VT1 [19]), Stx2 (or VT2 [5]), VT2vha [20], VT2vhb [20], VT2vpl [18] (or SLT-Iv [21]) and VT2vp2 [18] (or SLT-Iva [22]). Subsequently, more specific sets of primers were designed to differentiate the *stx*1 gene from the *stx*2 gene as described by Cebula et al. [14]. Furthermore, variant types of *stx*2 were determined by the method described by Tyler et al. [15]. Briefly, a set of primers to amplify a 285 bp fragment common to the B subunits of *stx*2 and its variants, genes *stx*2vha and *stx*2vbb, were used, and the amplified fragment was subsequently digested with HaeIII RsaI or NcoI (Takara Shuzo, Kyoto, Japan) to identify fragment patterns specific to each variant gene.

Restriction fragment length polymorphism (RFLP) analysis of phage DNA

Prepared phage DNA was digested with restriction endonucleases, *EcoRI* HindIII and Smal (Takara Shuzo), according to the manufacturer’s instructions, and the digested DNA was analysed by agarose gel electrophoresis. The similarity between DNA from individual phages was calculated from the number of bands showing identical mobility in the agarose gel by the Dice coefficient (SD) [23]:

\[SD = \frac{2|A\cap B + B\cap C|}{|A| + |B| + |C|} \times 100 \]

where A indicates the number of identical bands, and B and C show the number of bands present in one phage DNA but not in the other, respectively.

Preparation of chromosomal DNA and Southern blot hybridisation

For Southern blot analysis, the total bacterial DNA of the isolates was prepared by the method described previously [24]. Southern blot hybridisation of the chromosomal DNA preparations was performed to detect *stx*-containing fragments of phage DNA inserted in the host's DNA. The blotting was performed as described previously [25] and subsequent hybridisation was performed by the method described by Yoh et al. [26]. Briefly, the total DNA preparations were digested by several endonucleases, including *Smal*, *HindIII* and *EcoRI* (Takara). The digested DNAs were separated by conventional agarose 0.8% gel electrophoresis, transferred by Hybond-N+ membrane (Amersham, Buckinghamshire) and probed with alkaline phosphatase-labelled probes (Toyobo, Tokyo, Japan), following the manufacturer’s instructions. Probes for the A subunits of *stx*1 and *stx*2 comprised DNA corresponding to the nucleotide base sequences from 1106 to 1133 and from 1099 to 1127 from the initiation codon of the *stx*1 and *stx*2 genes, respectively [26]. In the *stx*2 gene, there is only one *Smal* restriction site, located at position 302–307 from the initiation codon of the gene [5, 20]. As the labelled *stx*2 probe was designed to hybridise to the 30-bp fragment, 1099–1127, the hybridised fragment included the sequence downstream from the *Smal* restriction site in the *stx*2 operon to another *Smal* restriction site somewhere outside the operon. Likewise, there is only one *HindIII* restriction site in the *stx*1 operon, located at 803–809 nucleotides from the initiation codon [5], and the labelled *stx*1 probe recognises the sequence from 1106–1133. Southern blot analysis was also performed on the phage DNA preparations in the same manner as described above.

Results

PFGE types of the host strains

Eight isolates belonged to PFGE type I, 10 to PFGE type II, two to PFGE type III, four PFGE type IV and one to PFGE type V. Two isolates showed PFGE patterns that were different from any other types (Table 1).

stx profile of chromosomal DNA preparations

All isolates were found to have *stx* genes by PCR assays carried out according to Lin et al. [18].
Table 1. Stx-convert ing phages isolated from EHEC O157:H7 strains in the USA and Japan

<table>
<thead>
<tr>
<th>ID no.</th>
<th>Origin/source</th>
<th>Date of isolation</th>
<th>stx profile</th>
<th>PFGE type</th>
<th>Phase ID no.</th>
<th>stx profile [14]</th>
<th>[15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL-933</td>
<td>USA/food</td>
<td>1982</td>
<td>stx1, stx2</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-1</td>
<td>USA/patient</td>
<td>1993</td>
<td>stx1, stx2</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-1</td>
<td>Hiroshima/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>la</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-3</td>
<td>Fukuoka/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>la</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-5</td>
<td>Gifu/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-10</td>
<td>Aschi/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-12</td>
<td>Okayama (Nimbus)/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>lb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-15</td>
<td>Osaka/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>lc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-16</td>
<td>Shiga/patient</td>
<td>August 1996</td>
<td>stx1, stx2</td>
<td>lc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-19</td>
<td>Osaka (Sakai)/patient</td>
<td>July 1996</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-22</td>
<td>Osaka (Sakai)/patient</td>
<td>July 1996</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-23</td>
<td>Kyoto/patient</td>
<td>July 1996</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-27</td>
<td>Wakayama/patient</td>
<td>August</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-8</td>
<td>USA/food</td>
<td>1993</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-10</td>
<td>USA/cattle</td>
<td>1993</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-11</td>
<td>USA/cattle</td>
<td>1993</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-25</td>
<td>Tokyo/patient</td>
<td>July 1996</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-31</td>
<td>Iwate (Morisaka)/patient</td>
<td>Sept. 1996</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-2</td>
<td>USA/patient</td>
<td>1993</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-3</td>
<td>USA/patient</td>
<td>1993</td>
<td>stx1, stx2</td>
<td>lla</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-36</td>
<td>Chiba/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-38</td>
<td>Gunma/patient</td>
<td>July 1996</td>
<td>stx1, stx2</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-40</td>
<td>Saga/patient</td>
<td>Sept. 1996</td>
<td>stx1, stx2</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-42</td>
<td>Saga/ry</td>
<td>Oct. 1996</td>
<td>stx1, stx2</td>
<td>IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-43</td>
<td>Kamagawa/patient</td>
<td>June 1996</td>
<td>stx1, stx2</td>
<td>Va</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

stx profile of phage DNA

A total of 51 Stx-convert ing phages was isolated from the 27 host strains. The phages, their host strains and the stx profiles obtained by three different PCR analysis are summarised in Table 1. All phages produced a 900-bp PCR- amplified product common to both stx1 and stx2 by primers described by Lin et al. [18]. The PCR analysis of Cebula et al. [14], which differentiates stx2 from stx2, showed that 14 of the phages had stx1 and that 37 phages had stx2 genes. Further PCR analysis based on the method of Tyler et al. [15] indicated that none of the stx2 genes belonged to its variant genes (i.e., stx2a, stx2b and stx2c).

RFLP of phage DNA

On the basis of the sum of the sizes of the individual restriction fragments, the whole genome size of each intact phage DNA ranged from 42 kb to 54 kb. The
agarose gel electrophoresis of restriction endonuclease \((\text{EcoRI and HindIII or Smal}) \) digests of the phage DNA preparations showed appreciable variations in their RFLP (Fig. 1a and b show EcoRI digests; data for HindIII and Smal digests not shown). RFLP patterns revealed that the average \(S_4 \) of 37 Stx2-converting phages by their EcoRI and Smal digests was 55% and 44% respectively. The phages isolated from the host strains belonging to PFGE types I, III, and IV were identical (\(S_4 \) values of 100%) within the same PFGE type. The phages from the host strains belonging to PFGE type II showed an appreciable variation in their patterns, but they were clearly distinguishable from the phages of other PFGE types (Fig. 2a), and generally the results showed that there were differences between the phages from the host strains of different PFGE types. However, there were some exceptions; those from a US isolate (EDL933) of the PFGE nondescriptive type were almost identical to those from the Japanese isolates belonging to PFGE type I with \(S_4 \) value of >95% (Fig. 2a and Fig. 3a, b and c). Likewise, the RFLP patterns observed in the 14 Stx1-converting phages showed appreciable variations with an average \(S_4 \) value of 67% on the EcoRI digests and 55% on the HindIII digests. The exceptions were the phages (\(\phi YO20V1, \phi YO27V1 \) and \(\phi 31V1 \)) from the host strains YO-20, YO-27 and YO-31, which were identical (Fig. 2b). These results indicate that some phages conserve their genomic structure in spite of the variation of host genome (i.e., the difference of PFGE types). It should be also noted that several Stx1- and Stx2-converting phages were isolated from a strain (i.e., CDC-1, YO-20 and YO25), which showed some variations from each other in RFLP patterns (Fig. 4).

Stx genes-hybridised RFLP of chromosomal and phage DNA

The \(stx_2 \) gene probe reacted with a common 4.5-kb or 2.5-kb Smal fragment of DNA from the various phage (Table 2). There were less variations around the \(stx_2 \) gene compared with the variations in the whole phage DNA described above. The majority of the host chromosomes contained the \(stx_2 \) genes in the same sized Smal fragment as the phage DNA while some (YO-19, YO-20, YO-22, YO-23 and YO-27) of the PFGE type IIa strains hybridised with a 7-kb Smal

![Image](https://example.com/image.png)

Fig. 1. Conventional agarose gel electrophoresis of EcoRI-digested DNA from: (a) Stx1-converting phages; M, DNA mol.-wt marker (HindIII-EcoRI double digest of \(\lambda \) phage DNA (0.83 ~ 21.23 kb); lane 1, \(\phi \)CDC1-a; 2, \(\phi \)CDC1V1; 3, \(\phi \)YO20-2; 4, \(\phi \)YO20V1; 5, \(\phi \)YO20hV1; 6, \(\phi \)22V1; 7, \(\phi \)23V1; 8, \(\phi \)27V1; 9, \(\phi \)CDC11; 10, \(\phi \)YO25; 11, \(\phi \)25V1; 12, \(\phi \)YO25aV1; 13 \(\phi \)YO25eV1; 14, \(\phi \)31V1. (b) Stx2-converting phages (data from 15 of the 37 phages only shown); M, DNA mol.-wt marker (HindIII-EcoRI double digest of \(\lambda \) phage DNA (0.83 ~ 21.23 kb); 1, \(\phi \)9335I; 2, \(\phi \)YO-1; 3, \(\phi \)YO-10; 4, \(\phi \)YO-8V2; 5, \(\phi \)CDC1b; 6, \(\phi \)CDC2; 7, \(\phi \)CDC3V2; 8, \(\phi \)19V2; 9, \(\phi \)YO20-1; 10, \(\phi \)CDC1V2; 11, \(\phi \)YO-36; 12, \(\phi \)KE-1, 13, \(\phi \)25V2; 14, \(\phi \)YO25eV2; 15, \(\phi \)YO31vV2.)
Fig. 2. Panels of similarity indices of RFLP patterns among (a) 37 Stx2-converting phages, (b) 14 Stx1-converting phages. S_4 values calculated from the fragment patterns of both EcoRI and SmalI (for Stx2-converting phages) or HindIII (for Stx1-converting phages) were 100% (●), >90% (●) and <90% (○), respectively.
fragment (Table 2) despite the fact that the probe-reacted Smal fragment in the corresponding phage DNA was 5 kb in size.

HindIII-digested RFLP patterns of the 14 Stx1-converting phages and their host strains with Stx1 DNA probe are also shown in Table 2. The size of the Stx1 probe-reacted fragments of the phage DNA corresponded to that of the host genome DNA in most cases. However, four Stx1-converting phages which had been isolated independently from YO-25 had reactive fragments (5 or 7 kb) markedly smaller than the host DNA fragment (19 kb).

Discussion

Previous PFGE analyses have shown that various genotypes of EHEC O157:H7 have spread in Germany [27], the USA [28] and Japan [13, 29]. The PFGE types of the Japanese isolates derived from the major outbreaks occurring in 1996 were classified into at least five groups [13]. However, the PFGE patterns exceeded >200 when those from other sporadic infections occurring between 1996 and 1997 were included [30]. As the stx genes are encoded on the lambdoid phage DNA lysogenised in the genome of EHEC O157:H7 [6], the present study investigated whether the host’s genotypic diversity reflects any genotypic variations of the phages. The results showed that, generally, the Stx2-converting phages were genotypically homogeneous within the same PFGE types of the host strains, but they were different from each other when the host strains belonged to different PFGE types. This would indicate that the host genome has co-evolved with the phage genome. However, it was not possible to make such a comparison with Stx1-converting phages, because only two Stx1 converting phages (φCDC1-a and φCDC1V1) could be isolated from a host strain (CDC-1; PFGE nondescript type) other than PFGE type II.

Although RFLP patterns of phages derived from different PFGE types were quite different, the Stx-2 converting phages from one of the US isolates (EDL933) that had been derived from the outbreak in 1982 shared remarkably similar molecular profiles with those from the Japanese host strains of PFGE type I. This result seems to be consistent with the recent finding [31] that an Stx2-converting phage from EHEC O157:H7 derived from the Okayama outbreak in 1996 resembled the Stx2-converting phage, 933W, isolated from EDL933, in its infective properties. The PFGE
analysis of these USA and Japanese host strains indicated that they were genotypically different from each other. On this basis, two hypotheses may be put forward to explain why homogeneous phages are found in the heterogeneous host strains. One is that the host strain carrying an Stx-converting phage altered its genotypic characteristics with time, and ramified into multiple PFGE types with the same phage being ‘vertically’ transferred. Alternatively, an Stx-converting phage might be released from a host strain and lysogenised into appropriate recipient host strains of different genotypes. The occurrence of such ‘horizontal transfer’ of Stx-converting phages has been demonstrated both in vivo and in vitro by recent experimental work conducted elsewhere [32, 33]. If this is the case the USA and Japanese isolates described above have originated from the same source.

The RFLP patterns seen in both Stx1- and Stx2-converting phages isolated from the host strains of PFGE type II seemed to be rather problematic, in that the patterns of most phages varied even when they were from the same host strain. A straightforward interpretation of this observation may be the gain or loss of a restriction endonuclease site of the phages. Alternatively, those E. coli strains might have been lysogenised by more than one Stx1- or Stx2-converting phage of different genotypes. Recent genome sequencing revealed that EHEC O157:H7 Sakai strain (PFGE type Ia) carried at least 10 lambda phages in the genome [34]. It is also likely that phage propagation promotes genetic recombination between those lambdoid phages, which leads to the diversity of Stx-converting phages. Further molecular analysis, including cross-hybridisation of the phages from different PFGE groups, would be necessary to confirm the genotypic diversity or instability of Stx-converting phages.

Fig. 4. Conventional agarose gel electrophoresis of the DNA from Stx-converting phages showing variations (<90% Sd values) in their RFLP patterns despite the fact that they were isolated from the same host strain. (a) EcoRI digests of lane 1, φCDC1-b, 2, φCDC1V2. (b) Smal digests of: lane 1, φYO20b-1, 2, φ20V2. (c) EcoRI digests of: lane 1, φ25V2, 2, φYo25cV2. (d) HindIII digests of: lane 1, φCDC1-a, 2, φCDC1V1. (e) HindIII digests of: lane 1, φYO20-2, 2 φYO20V1; 3, φYo20bV1. (f) EcoRI digests of: lane 1, φYO-25; 2, φ25V1; 3, φYo25aV1. M. DNA mol.-wt marker (1-kb DNA ladder, 1 ~ 12 kb).
Table 2. Southern blot analysis of phage DNA and host strains total DNA

<table>
<thead>
<tr>
<th>Host strain no.</th>
<th>PFGE type</th>
<th>Size (kb) of fragment that reacted with
stx1 probe</th>
<th>Size (kb) of fragment that reacted with
stx2 probe</th>
<th>Phage no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDL933</td>
<td>ND</td>
<td>4.5</td>
<td></td>
<td>g9338</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-1</td>
<td>ND</td>
<td>19</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pCdc1-a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pCdc1Vb</td>
</tr>
<tr>
<td>YO-1</td>
<td>Ia</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYe-1</td>
</tr>
<tr>
<td>YO-3</td>
<td>Ia</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-3</td>
</tr>
<tr>
<td>YO-5</td>
<td>Ib</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-5</td>
</tr>
<tr>
<td>YO-10</td>
<td>Ib</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-10</td>
</tr>
<tr>
<td>YO-12</td>
<td>Ib</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-12</td>
</tr>
<tr>
<td>YO-15</td>
<td>Ib</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-15</td>
</tr>
<tr>
<td>YO-8</td>
<td>Ic</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYe-2</td>
</tr>
<tr>
<td>YO-16</td>
<td>Ic</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo-16</td>
</tr>
<tr>
<td>YO-19</td>
<td>Ila</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-20</td>
<td>Ila</td>
<td>19</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo20-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo20v1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo20v1</td>
</tr>
<tr>
<td>YO-22</td>
<td>Ila</td>
<td>19</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p22v1</td>
</tr>
<tr>
<td>YO-23</td>
<td>Ila</td>
<td>19</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p23v1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p23v2</td>
</tr>
<tr>
<td>YO-27</td>
<td>Ila</td>
<td>19</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>p27v1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pYo27v2</td>
</tr>
<tr>
<td>CDC-8</td>
<td>Ila</td>
<td>19</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>CDC-10</td>
<td>Ila</td>
<td>19</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>CDC-11</td>
<td>Ilic</td>
<td>19</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>YO-25</td>
<td>Ild'</td>
<td>19</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>YO-31</td>
<td>Ilj</td>
<td>23</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CDC-2</td>
<td>III</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDC-3</td>
<td>IIIa</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-36</td>
<td>IV</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-38</td>
<td>IV</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-40</td>
<td>IV</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-42</td>
<td>IV</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YO-41</td>
<td>Ia</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fragment sizes in bold letters indicate that the reactive fragments were markedly smaller than the corresponding fragments of the host total DNA. ND, not determined.

*Southern blotting was performed with stx1 and stx2 probes for HindIII and Smal digests of the prepared DNA, respectively.

The stx1 and stx2 genes have only one cleavage site for HindIII and Smal, respectively. The DNA hybridisation probes that were used for stx1 and stx2 detected the sequences downstream from each restriction site of the stx genes to another restriction site somewhere outside the stx operons. The DNA probe hybridised with the same sized DNA fragment between DNA preparations of a phage and its host chromosome belonging to PFGE type I, III, IV, V and other nondenotritic types. In contrast, the fragments of the phage DNAs hybridised were, in many cases, different in size from those of the host strains' chromosome belonging to PFGE type II (see Table 2). This may indicate that, for PFGE type II, the phages were often integrated into the recipient host chromosome through the attachment site located downstream of the stx operon, as shown in Fig. 5. Huang et al. [35] suggested that stx2 was located on the phage DNA at least 12–13 kb apart from its attachment site (estimated from the figure provided by Huang et al. [35]); however, sufficient details were not available. As the probe-reacted restriction fragments of the phage DNA were much smaller than those of the total DNA from several host strains, the stx1 and stx2 genes are likely to be located in much closer proximity to the
Fig. 5. Schematic drawings of phage attachment site proposed for four Stx1-converting phages, φY025, φ25V1, φYo25aV1 and φYo25cV1, and eight Stx2-converting phages, φ19V2, φYO29-1, φ20V2, φYo20aV2, φYo20bV2, φYo22V2, φ23V2 and φYO27V2 (not to scale). (a) HindIII or Smal cut fragment of the total DNA preparation of the host strain after lysogenisation of the phage.
phage attachment site. This in turn suggests that the sex
genes can be either lost or gained by an aberrant
excision of the prophage like other toxin-converting
bacteriophages reported for several pathogenic bacteria
[36, 37].

We thank prefectural and municipal public health institutes in Japan
and the Centers for Disease Control and Prevention (CDCP) in the
USA for kindly providing EHEC O157:H7 strains. We also thank T.J.
Barrett of the CDCP and P. Timms, Queensland University of
Technology, for their valuable comments on an earlier draft of this
paper.

References

1. Griffin PM, Tauxe RV. The epidemiology of infections caused by
Escherichia coli O157:H7, other enterohemorrhagic E. coli,
and the associated hemolytic uremic syndrome. Epidemiol Rev
2. Riley IW, Remis RS, Helgerson SD et al. Hemorrhagic colitis
3. Karanfil MA. Infection by Verocytotoxin-producing
Rev. 1987; 51: 206–220.
Nucleotide sequence analysis and comparison of the structural
genomes for Shiga-like toxin I and Shiga-like toxin II encoded by
bacteriophages from Escherichia coli 933. FEMS Microbiol Lett
6. O’Brien AD, Newland JW, Miller SF, Holmes RK, Smith HW,
Formal SB. Shiga-like toxin-converting phages from
Escherichia coli strains that cause hemorrhagic colitis or infantile
7. Smith HR, Day NP, Scottland SM, Gross RJ, Rowe B. Phage-
8. Rieker PJGM, Willshaw GA, Smith HR, Field AM, Scotland
SM, Rowe B. Comparison of vero-cytotoxin-encoding phages
from Escherichia coli of human and bovine origin. J Gen
Variants of Shiga like toxin II constitute a major toxin
component in Escherichia coli O157 strains from patients with
338–343.
10. Dutz M, Janetzki-Mittmann C, Franke S, Gunzer F, Schmidt H,
Karch H. Analysis of the enterohemorrhagic Escherichia coli
O157 DNA region containing lambda phage gene p and
11. Wells JG, Davis BR, Wachsmuth IK et al. Laboratory
investigation of hemorrhagic colitis outbreak associated with
a rare Escherichia coli serotype. J Clin Microbiol 1983; 18:
512–520.
12. National Institute of Health and Infectious Disease Control
Division, Ministry of Health and Welfare of Japan. Outbreaks of
enterohemorrhagic Escherichia coli O157:H7 infection, 1996.
Japan. InfectiousAgents Surveillance Rep 1996; 17:
138–151.
13. Iizumiya H, Terajima J, Wada A et al. Molecular typing of
enterohemorrhagic Escherichia coli O157:H7 isolates in Japan
by using pulsed-field gel electrophoresis. J Clin Microbiol 1997;
35: 1675–1680.
14. Cebula TA, Payne WL, Feng P. Simultaneous identification of
strains of Escherichia coli serotype O157:H7 and their Shiga-
like toxin type by mismatch amplification mutation assay-
Identification of Verotoxin type 2 variant B subunit genes in
Escherichia coli by the polymerase chain reaction and
restriction fragment length polymorphism analysis. J Clin
outbreak of Escherichia coli O157:H7 infections from
1993; 42: 258–263.
17. Casadaban MJ, Cohen SN. Analysis of gene control signals by
138: 179–207.
18. Lin Z, Kuranzono H, Yamaski S, Takeda Y. Detection of
variation in Escherichia coli O157:H7 by polymerase chain
19. Tachodes T, Tanebe T, Hong YM et al. Identity of molecular
types of Shiga-like toxin 1 (VT1) from Escherichia coli
O157:H7 with that of Shiga toxin. Microb Pathog 1988; 5:
357–362.
20. Ito H, Terai A, Kurazono H, Takeda Y, Nishibuchi M.
Cloning and nucleotide sequencing of Vero toxin 2 variant
genomes from Escherichia coli O91:H21 isolated from a patient
with the hemolytic uremic syndrome. Microb Pathog 1990; 8:
47–60.
21. Mariner LRM, Peiris JSM, Cryz JS, O’Brien AD. Escherichia coli
strains isolated from pigs with edema disease produce a
variant of Shiga-like toxin II. FEMS Microbiol Lett 1987; 44:
33–38.
22. Gannon VPJ, Teeling C, Masri SA, Gyles CL. Molecular clonning
and nucleotide sequence of another variant of the
Escherichia coli Shiga-like toxin II family. J Gen Microbiol
23. Rice JL. Measures of the amount of ecologic association
24. Stauffer GL, Plamann MD, Stauffer LT. Construction and
expression of hybrid plasmids containing the Escherichia coli
25. Mananits T, Fritsch EFP, Sambrook J. Molecular cloning: a
oligonicotinamide probes to identify enterohemorrhagic
27. Böhm K, Hark C. DNA fingerprinting of Escherichia coli
O157:H7 strains by pulsed-field gel electrophoresis. J Clin
28. Barrett TJ, Lior H, Green JH et al. Laboratory investigation of
a multistate food-borne outbreak of Escherichia coli O157:H7 by
using pulsed-field gel electrophoresis and phage typing.
29. Watanabe H, Wada A, Inagaki Y, Ish K, Tamura K. Outbreaks of
enterohaemorrhagic Escherichia coli O157:H7 infection by two
different genotype strains in Japan, 1996. Lancect 1996;
348: 831–832.
K. Molecular epidemiological analysis of enterohemorrhagic
51 Suppl: S115–S123.
31. Watarai M, Sato T, Kobayashi M et al. Identification and
characterization of a newly isolated Shiga toxin 2-converting
phage from Shiga toxin-producing Escherichia coli. Infect
32. Acheson DWK, Reid J, Zhang X, Kacysz GT, Mekalanos J,
Walder MK. In vivo transduction with Shiga toxin 1-encoding
33. Muminova M, Jefre A. Abundance of sewage of bacteriophages
that infect Escherichia coli O157:H7 and that carry the
2443–2447.