TECHNICAL NOTE

A mouse model of recrudescence of *Toxoplasma gondii* infection

S. NICOLL, S. WRIGHT*, S. W. MALEY*, S. BURNS† and D. BUXTON*

Centre for Tropical Veterinary Medicine, Easter Bush, Roslin, Midlothian EH25 9RG, *Moredun Research Institute, 408 Gilmerton Road, Edinburgh EH17 7JH and †Regional Virus Laboratory, City Hospital, Greenbank Drive, Edinburgh EH9 5SB

Dexamethasone was given to mice infected with *Toxoplasma gondii* to provide a model of recrudescence of infection in immunocompromised patients and to permit investigation of the interaction between parasite and host.

Introduction

Toxoplasma gondii affects c. 500 million people worldwide [1]. Although it causes a subclinical infection in most individuals, reactivation (or recrudescence) of tissue cysts is an increasing problem in immunosuppressed patients. Clinical toxoplasmosis occurs in 33% of AIDS patients with evidence of past toxoplasma infection [2] with the development of encephalitis, chorioretinitis and lymphadenopathy. The polymerase chain reaction (PCR) has been used to detect *T. gondii* DNA in peripheral blood samples from sheep [3]. The technique has also been used to detect the parasite in tissue from AIDS patients before clinical manifestations, suggesting that parasitaemia occurs during reactivation, although it may be transient [4].

The aim of this study was to develop a mouse model of *T. gondii* recrudescence. Previous studies have used animals, including athymic (nude) and SCID mice, to investigate interactions between parasite and host during acute infection [5–9]. However, both nude and SCID mice are difficult to work with because of their severely impaired immune systems and the requirement for them to be kept in sterile conditions to prevent opportunistic infections. Dexamethasone was administered to clinically normal mice in a study of *Pneumocystis carinii* [10] and this technique was applied to mice persistently infected with *T. gondii* with a view to inducing recrudescence of infection.

Materials and methods

Animals

A pool of 60 chronically infected Porton mice (30 females and 30 males) was established by intraperitoneal inoculation of each with 30 *T. gondii* tissue cysts of the M3 isolate [11]. A further 40 Porton mice (20 females and 20 males) were kept as uninfected controls. Groups of mice were caged separately and fed with an approved standard ration. Six weeks after infection, two groups of infected mice (groups 1 and 2) were given dexamethasone 8 and 4 mg/L, respectively, in drinking water, and 20 infected mice (group 3) received untreated water. Two uninfected control groups were given dexamethasone 8 mg/L (group 4) or untreated water (group 5). Treated and untreated water was changed every second day. All groups receiving dexamethasone also received oxytetracycline 1 mg/L in drinking water for the duration of the study to reduce the risk of contracting other opportunistic infections. Blood samples were collected from all groups by tail bleeding before treatment commenced, and weekly thereafter. Mice were monitored daily over 8 weeks for clinical signs of toxoplasmosis; any that showed signs of illness were killed immediately with CO2 gas and samples of brain, blood and heart were taken for analysis. At the end of the 8-week study period all remaining mice were killed and examined in the same way.

Pathology

The brains were removed from all mice post mortem with stringent aseptic precautions to avoid cross-contamination. Half the brain was placed in a sterile Microfuge tube and stored at −20°C until required for PCR analysis. The other half was placed in formal saline 10% for 7 days. Each was then sectioned coronally and four blocks were dehydrated through graded alcohols and toluene before embedding in paraffin wax. Sections 5 μm thick were cut and stained with haematoxylin and eosin (HE) and then examined for lesions. Sections with minimal to mild histopathological lesions were scored +, and those with moderate to severe change were scored ++.

Received 9 Apr. 1996; revised version accepted 13 Aug. 1996.
Corresponding author: Dr S. Nicoll.
PCR analysis and serology

Samples of blood taken weekly, and blood, brain and heart obtained post mortem were examined by PCR for the presence of the B1 gene of *T. gondii* [12]. Plasma samples collected on day 0 and post mortem were tested for IgG against *T. gondii* by an ELISA modified for use in mice [13].

Statistical analysis

The effect of dexamethasone on the morbidity rate and on the presence or absence of the parasite in samples was analysed by Fisher’s exact test.

Results

Signs of illness included a tottering gait coupled with a hunched appearance and evidence of emaciation and dehydration. Eight of 20 (40%) mice given dexamethasone at 8 mg/L developed clinical signs and were killed, compared with two (10%) of 20 given 4 mg/L (p = 0.049), and none of the control groups (p = 0.0027). Uninfected control mice did not show signs of toxoplasmosis, but one uninfected mouse given dexamethasone died suddenly. Parasite DNA was detected by PCR in nine samples of brain, six samples of heart and three samples of blood (no sample was obtained from one mouse) collected from the 10 mice that developed clinical signs of toxoplasmosis. All samples from infected mice that did not receive dexamethasone (group 3) and uninfected controls (group 4 and 5) gave negative results.

Blood samples collected at weekly intervals were positive by the PCR in 49 (38.9%) of 126 samples from group 1 (dexamethasone 8 mg/L), 32 (23.4%) of 137 samples from group 2 (dexamethasone 4 mg/L), and 12 (8.6%) of 140 samples in group 3 (no dexamethasone). The results of group 1 versus group 2 (p = 0.0064), group 1 versus group 3 (p < 0.0001) and group 2 versus group 3 (p = 0.008) were highly significant.

Blood samples taken from survivors at the end of the experiment were positive by the PCR in four (33.3%) of 12 samples from group 1, five (27.7%) of 18 from group 2, and three (15%) of 20 from group 3 (differences were not significant). All 12 samples of brain from mice given dexamethasone at 8 mg/L (group 1) were positive, compared with 16 (88.8%) of 18 that received dexamethasone at 4 mg/L (group 2), and 15 (75%) of 20 that received no dexamethasone (group 3). These differences were not significant. Similarly, all 12 samples of heart were positive in group 1, 15 (83.3%) of 18 in group 2, and nine (45%) of 20 in group 3 (significance between groups 1 and 3; p = 0.0006).

Pathology

Examination of brain showed three patterns of neuropathological lesions; (i) focal necrosis that occurred in the thalamus or cerebral cortex or both; (ii) foci of gliosis that ranged from small to large clusters of cells; (iii) lymphoid inflammation with perivascular cuffing by lymphoid cells as well as meningeal accumulations of similar cells (Fig. 1). The results are summarised in Table 1.

Necrosis was observed in two mice with no evidence of recrudescence (group 1) and in five infected mice with clinical signs of infection; all of them had been given dexamethasone. Gliosis was observed in 14 (70%) of 20 samples from group 1, 13 (65%) of 20 samples from group 2, and 15 (75%) of 20 samples from group 3, and was more frequently observed in clinically affected than in clinically normal animals. The incidence of lymphoid inflammation was similar in groups 1, 2 and 3 (85%, 90% and 100%, respectively) but tended to be more severe in group 3.

Fig. 1. (A) Lymphoid meningitis and an associated glial response in the cerebral cortex of a mouse infected with *T. gondii* and treated with dexamethasone (4 mg/L in drinking water) (HE × 56). (B) Acute necrosis in the cerebral cortex of a mouse infected with *T. gondii* and treated with dexamethasone (4 mg/L in drinking water) (HE × 56).
two effects of dexamethasone. First, it acted as an
anti-inflammatory agent, which were not observed in any of the control
groups. While there were no differences in the
detection of parasite DNA in samples of blood and
brain from infected mice, the samples of heart were
distinguishable from those of uninfected mice were
negative (OD values <2.5). Samples from infected
mice remained positive after treatment with dexa-
methasone, but the mean OD value fell from 121.5 to
99.5 in mice given dexamethasone 8 mg/L.

Discussion

Dexamethasone has been used successfully to create a
mouse model of *P. carinii* infection [10]. In the present
study mice persistently infected with *T. gondii* and
given dexamethasone exhibited increased morbidity,
especially when a high dose of 8 mg/L was used (group
1), compared with untreated mice (group 3). Treated
mice exhibited classic locomotor signs of toxoplas-
mosis which were not observed in any of the control
groups. While there were no differences in the
detection of parasite DNA in samples of blood and
brain from infected mice, the samples of heart were
more frequently positive in those given dexamethasone
(groups 1 and 2) than in untreated mice (group 3).
Lower levels of *T. gondii* IgG were found in mice given
the higher dose of dexamethasone (group 1), providing
further evidence of the immunosuppressive effect of
this treatment.

Pathological examination of brain sections revealed
two effects of dexamethasone. First, it acted as an
immunosuppressant to allow recrudescence of a
chronic infection in a number of mice; second, the
drug had an anti-inflammatory effect, so that increased
intake of dexamethasone resulted in a slight increase in
the extent of necrosis. Infected mice given
dexamethasone showed a slight reduction in the
severity of gliosis and lymphoid inflammation, which
appeared to be a result of the anti-inflammatory
effects of dexamethasone treatment. However, most
mice that developed clinical symptoms of toxoplasmosis developed moderate to severe gliosis and
lymphoid inflammation.

Dexamethasone can induce recrudescence of toxo-
plasmosis in persistently infected mice to mimic the
effects observed in the human AIDS population, in
which 30–35% of previously infected individuals
develop clinical signs of infection [2]. This model
should facilitate investigation of the parasite-host
interaction, although account must be taken of the
anti-inflammatory effects of the drug.

This work was funded by the Medical Research Council (SPG
9022510). Much of the work was carried out at the Infectious
Diseases Unit, City Hospital, Edinburgh with the assistance of Dr C.
S. L. Leen and Dr R. F. Brettie. Statistical analysis was by Linda
Williams. S. W.; S. M., D. B. and L. W. were supported by the
Scottish Office Agriculture Environment and Fisheries Department.

Table 1. Results of pathological examination of brain sections tested

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>Number of mice examined</th>
<th>Necrosis</th>
<th>Gliosis</th>
<th>Lymphoid inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Infected, dexamethasone 8 mg/L (group 1)</td>
<td>20 (8)</td>
<td>5 (3)</td>
<td>1 (1)</td>
<td>12 (5)</td>
</tr>
<tr>
<td>Infected, dexamethasone 4 mg/L (group 2)</td>
<td>20 (2)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>11 (1)</td>
</tr>
<tr>
<td>Infected, no dexamethasone (group 3)</td>
<td>20 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>13 (0)</td>
</tr>
<tr>
<td>Uninfected, dexamethasone 8 mg/L (group 4)</td>
<td>20</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Uninfected, no dexamethasone (group 5)</td>
<td>20</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

Numbers in parentheses indicate those mice in groups 1, 2 and 3 showing clinical signs of illness.

respectively, in groups 1–3), but not in uninfected
control mice. Tissue cysts in groups 1 and 2 seemed
to be adjacent to areas of inflammation whereas in
group 3 they were generally unassociated with other
changes.

Serology

Blood samples obtained on day 0 from infected mice
were positive by IgG ELISA (OD values: 119.7–
128.6), whereas those from uninfected mice were
negative (OD values <2.5). Samples from infected
mice remained positive after treatment with dexa-
methasone, but the mean OD value fell from 121.5 to
99.5 in mice given dexamethasone 8 mg/L.

References

1. Hughes HPA. Toxoplasmosis: the need for improved diagnostic
techniques and accurate risk assessment. *Curr Top Microbiol
2. Luft BJ, Remington JS. Toxoplasmic encephalitis in AIDS.
3. Wastling JM, Nicoll S, Buxton D. Comparison of two gene
amplification methods for the detection of *Toxoplasma gondii*
in experimentally infected sheep. *J Med Microbiol* 1993; 38:
360–365.
4. Nicoll S, Burns SM, Brettie RP, Leen CSL. A comparison of
two methods of gene amplification for the diagnosis of
Toxoplasma gondii in AIDS. *J Infect (in press).*
5. Conley FK, Jenkins KA. Immunohistological study of the
anatomic relationship of *Toxoplasma* antigens to the
immunoreactive sites in the brains of mice chronically infected
6. Ferguson DJP, Hutchison WM. The host-parasite relationship
of *Toxoplasma gondii* in the brains of chronically infected
mice. *Virchows Arch Pathol Anat Histopathol* 1987; 411:
39–43.
7. Lindberg RE, Frenkel JK. Toxoplasmosis in nude mice.
8. Buxton D. Experimental infection of athymic mice with
9. Johnson LI. SCID mouse models of acute and relapsing
chronic *Toxoplasma gondii* infections. *Infect Immun* 1992; 60:
3719–3724.
10. Powles MA, McFadden DC, Pittarello LA, Schmata DM.
Mouse model for *Pneumocystis carinii* pneumonia that uses
natural transmission to initiate infection. *Infect Immun* 1992;
60: 1397–1400.
Vaccination of sheep with a live incomplete strain (S48) of
