BACTERIAL PATHOGENICITY

Characterisation and protective capacity of monoclonal antibodies elicited in mice against protein epitopes of antibiotic-exposed Escherichia coli

M. T. LUN, G. RAPONI, A. M. AMATUCCI, P. G. NATALI*, R. FRAIOLI* and C. MANCINI

Institute of Microbiology, University of Rome ‘La Sapienza’ and *Immunology Laboratory, Regina Elena Cancer Institute, Rome, Italy

The binding capacity and the protective activity of three monoclonal antibodies (MAbs) – ARM 1-4, ARM 1-7 and ARM 2-2 – obtained from spleen cells of mice immunised with Escherichia coli O6:K– pre-treated with sub-MIC of aztreonam were studied. The MAbs belonged to IgG₁ isotype and showed different reactivity toward protein epitopes of E. coli in an immunoblotting assay. ARM 1-4 recognised epitopes on molecules of 30 kDa and 40 kDa. ARM 1-7 identified an epitope of a molecule of 41 kDa, and ARM 2-2 recognised epitopes of molecules of 15 kDa and 41 kDa. In ELISA the MAbs cross-reacted with E. coli O7:K–, E. coli O111:B4 and E. coli O128:K– with different binding affinity. Furthermore, the MAbs showed complement-dependent bactericidal activity. The MAbs displayed different protective capacities when given to mice 90 min before lethal challenges with 2 × LD₅₀, 4 × LD₅₀ and 8 × LD₅₀ of E. coli strains. In all but one instance (ARM 1-4 versus E. coli O7:K–) it was not possible to correlate protective capacity with binding affinity of a MAb to a given bacterial cell. Therefore, the epitopes recognised by the MAb may be more closely associated with bacterial virulence than in binding to the bacterial cell.

Introduction

Gram-negative bacterial infections often progress to serious illness, septic shock and death [1, 2].

In bacterial resistance against host defence, an essential role is played by the outer structures of gram-negative bacteria. Lipopolysaccharides (LPS) are considered major antigenic and toxic components. Immunotherapy with antibodies against endotoxin improves survival in animal models [3–6] and several studies have indicated the importance of the immune response against outer-membrane proteins (OMPs) in protection against gram-negative bacteria [7–12].

In a previous study it was observed that MT 1-F, a monoclonal antibody (MAb) raised in mice after immunisation with antibiotic-treated Escherichia coli O6:K– recognised a protein epitope of 12 kDa and conferred protection against lethal E. coli infections [13].

The present study was undertaken to analyse the protective activity of three murine MAbs, ARM 1-4, ARM 1-7 and ARM 2-2, from spleen cells obtained from mice immunised with antibiotic-treated E. coli O6:K–. The MAbs recognised protein structures of untreated E. coli O6:K– with different mol. wts, and were used in an animal model to study their activity against lethal challenge with homologous and heterologous strains of E. coli.

Materials and methods

Bacteria

E. coli O6:K– (ATCC 25922, Difco Laboratories) was used for immunisation of mice. E. coli O7:K– and E. coli O111:B4 were a kind gift of Professor J. Verhoef (Eijkman-Winkler Laboratory for Medical Microbiology, University Hospital of Utrecht, The Netherlands); E. coli O128 was kindly provided by Professor A. Caprioli, (Istituto Superiore Sanità, Rome).
Immunisation procedure

The immunisation procedure was described previously [14]. *E. coli* O6:K−, either untreated or grown overnight in the presence of 0.5 × MIC of aztreonam (Bristol-Myers Squibb, Rome, Italy; MIC = 0.078 mg/L) was killed in formalin 0.2%, washed three times in sterile saline and adjusted to an optical density (OD) equivalent to 10^9 cfu/ml. The bacterial suspension was injected intraperitoneally (i.p.) into female BALB/c mice according to the following scheme: day 1, 10^7 cfu/mouse; day 7, 2 × 10^6 cfu/mouse; days 14, 21, 35 and 56, 1 × 10^6 cfu/mouse. On day 42 of the immunisation procedure, 10 mice from each group were anaesthetised with diethyl ether and bled by retro-orbital puncture to collect serum.

Production and selection of hybridomas

Hybridomas were produced by a minor modification of the method of Fazekas De St Groth and Scheidegger [15]. Spleen cells from mice immunised with antibiotic-treated *E. coli* O6:K− were fused with mouse myeloma SP1 cells. The supernatants of wells containing growing clones were tested by ELISA for antibodies directed against untreated *E. coli* O6:K−. The antibody-producing clones were subcloned by limiting dilution and, after growth, 3 × 10^4 cells were injected i.p. into normal mice, which had been primed 7 days before by i.p. injection of 0.5 ml of 2,6,10,14-tetramethyl pentadecane (Pristane; Sigma) [16]. The ascitic fluids obtained were collected aseptically and stored at −20°C. Antibody isotyping was performed with the Monoclonal Antibody Isotyping Kit 1 (HRP/ABTS, Pierce Chemical Co., Rockford, IL, USA) by a double immuno-diffusion technique. MAbs from ascitic fluid were purified by protein G column chromatography (Immunopure plus IgG purification Kit; Pierce) [17].

ELISA

The binding of MAbs to bacterial cells was determined by ELISA as described previously [18]. Viable, untreated *E. coli* O6K−, *E. coli* 07:K−, *E. coli* O111:B4 and *E. coli* O128:K−, (10^7 cfu/ml in coating buffer solution) were used to coat the microtitration plates (Nunclon, Nunc, Denmark). The reactivity of two-fold diluted MAbs (starting concentration 5 μg/ml) was measured in a microtitration plate reader (Easy Beam, STL-Lab Instrument, Innsbruck, Austria) at 492 nm with peroxidase-labelled goat anti-mouse IgG conjugate (BioRad, Laboratories Milan, Italy). Optical densities (OD) below 0.2 were considered negative. Endpoint titres in ELISA at OD 0.7 were calculated by linear regression with a spreadsheet computer programme and expressed as log2 dilution factor (DF).

Immunoblotting

Proteins of untreated *E. coli* O6:K− were resolved by PAGE under reducing conditions in slab gels [19]. The material was transferred to nitrocellulose paper [20] and strips were incubated for 18 h at room temperature with the test MAbs. The reactivities were detected by enhanced chemiluminescence (ECL, Amersham International Plc, Airlington Heights, IL, USA), as described previously [21].

In further experiments, proteins of untreated *E. coli* O6:K− (1 mg/ml) were digested with proteinase K (2.5 μg/ml) for 1 h, the material was transferred to nitrocellulose by electrophoresis, and the reactivities of the MAbs were tested as described above.

Bactericidal assay

The bactericidal activity of MAbs was measured as described previously [22]. A 100-μl sample of *E. coli* O6:K− (5 × 10^1 cfu/ml) was added to 100 μl of purified MAb (50 ng/ml) in the presence of 200 μl of guinea-pig serum as a complement source. After incubation for 45 min at 37°C in a water bath with shaking, 100 μl of the mixture was plated on blood agar. After incubation overnight at 37°C, the number of colonies was counted. Mouse SP1 myeloma-inducing ascitic fluid and guinea-pig serum alone were used as controls. Serum bactericidal activity of the test MAbs was expressed as a relative percentage of the total amount of surviving bacteria incubated in buffer only.

In-vivo protection experiments

Female BALB/c mice (no. 450, Nossan, Correzzana, Italy) 6–8 weeks old, average weight 25 g, were used. The mice were housed in groups of 10 and provided with food (Standard pellets; Dottor Piccioni, Gessate, Italy) and water *ad libitum*. In passive protection experiments, doses of 2 × LD50, 4 × LD50 and 8 × LD50 of live *E. coli* O6:K−, *E. coli* 07:K−, *E. coli* O111-B4 and *E. coli* O128:K− (the LD50 for these strains were 3 × 10^7 cfu/mouse, 2 × 10^6 cfu/mouse, 1 × 10^8 cfu/mouse, 1 × 10^8 cfu/mouse respectively) were injected into mice 90 min after i.p. injection of test MAb (5 μg/mouse). Ten female BALB/c mice given sterile saline instead of MAb served as a control group for each *E. coli* strain used. Mice were checked daily for 7 days and deaths were recorded [13].

All animal experiments were approved by the Institute’s Ethical Committee. Care was taken to avoid any pain to the animals.

Statistical analysis

Data obtained after bacterial challenge were analysed by the χ² test. Data obtained in ELISA were expressed as the mean DF and the SD of three independent experiments done in duplicate and analysed by Student’s t test; p values < 0.05 were considered significant.
Results

Characterisation of MAbs

Around 100 hybrid clones were obtained by fusing splenocytes of mice immunised with antibiotic-treated E. coli O6:K− and SP1 plasmacytoma cells [13]. The clones considered in this report (ARM 1-4, ARM 1-7 and ARM 2-2) produced MAbs of IgG1 isotype, as shown by immunodiffusion.

MAb specificity was analysed with a preparation of E. coli O6:K− separated by SDS-PAGE under reducing conditions and blotted on to a nitrocellulose membrane. MAb ARM 1-4 reacted with epitopes carried by molecules of 30 and 40 kDa; MAb ARM 1-7 recognised epitopes expressed by molecules of 41 kDa. MAb ARM 2-2 reacted with epitopes of molecules of 15 and 41 kDa (Fig. 1). In immunoblotting experiments, after enzymic digestion of the E. coli O6:K− antigenic preparation with proteinase K, none of the MAbs reacted with any epitopes (data not shown).

ELISA was used to show whether the epitopes recognised by the MAbs on the immunising strain E. coli O6:K− were exposed on the surface of other E. coli strains. Each MAb bound to all the E. coli serotypes used, and the reactivity of every MAb did not vary significantly when tested against the different bacterial serotypes (Table 1). However, the reactivity of the MAbs to the same E. coli strain differed. ARM 1-4 bound to E. coli O6:K− to a significantly greater degree than did ARM 2-2 (12.2 ± 0.9 versus 7.0 ± 1.5, p < 0.001), but not to a greater degree than ARM 1-7 (9.6 ± 2.8). No major differences were observed between ARM 1-7 and ARM 2-2 in binding to E. coli O7:K−. ARM 1-4 presented a significantly higher activity towards the latter serotype than ARM 1-7 (13.3 ± 2.5 versus 6.0 ± 1.5, p < 0.001) and ARM 2-2 (13.3 ± 2.5 versus 6.8 ± 0.9; p < 0.05). When the activity towards E. coli O111:B4 was measured, ARM 1-4 presented a significantly higher binding capacity than ARM 2-2, but there were no differences between ARM 1-4 and ARM 1-7 nor between ARM 1-7 and ARM 2-2. All the MAbs reacted with serotype O128:K− in a similar manner (Table 1).

The bactericidal capacity of the MAbs against live E. coli O6:K− was tested with guinea-pig complement. These experiments showed that MAbs ARM 1-4 and ARM 1-7 had 40% bactericidal activity, whereas MAb ARM 2-2 showed an activity of 55%. Experiments without complement showed that, despite the presence of MAbs, the survival of E. coli O6:K− was >100%, indicating that killing was complement mediated.

Protection studies

The protective capacity of MAbs ARM 1-4, ARM 1-7, and ARM 2-2 was investigated in non-immunised animals. Groups of ten BALB/c mice were given the MAbs (5 µg/mouse) by i.p. injection and challenged 90 min later with 2, 4 or 8 × LD50 of different live E. coli strains.

After observation for 7 days all the animals given ARM 1-4 and challenged with 2 × LD50 E. coli O6K− and E. coli O111:B4 survived. When 2 × LD50 of E. coli O7:K− and E. coli O128:K− were injected, the mortality was 50% and 60% respectively. With a challenge of 4 × LD50, six mice survived after injection of E. coli O6K− and two mice after E. coli O128:K−; no protection was observed against E. coli O7:K− and E. coli O111:B4. When the inoculum was 8 × LD50 all animals had died after 48 h (Fig. 2).

Table 1. Reactivity of MAbs ARM 1-4, ARM 1-7 and ARM 2-2 towards different strains of E. coli

<table>
<thead>
<tr>
<th>MAb</th>
<th>O6:K−</th>
<th>O7:K−</th>
<th>O111:B4</th>
<th>O128:K−</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM 1-4</td>
<td>12.2 SD 0.9</td>
<td>13.3 SD 2.5</td>
<td>12.0 SD 1.5</td>
<td>9.0 SD 2.5</td>
</tr>
<tr>
<td>ARM 1-7</td>
<td>9.6 SD 2.8</td>
<td>6.0 SD 1.5</td>
<td>9.0 SD 3.0</td>
<td>5.2 SD 2.0</td>
</tr>
<tr>
<td>ARM 2-2</td>
<td>7.0 SD 1.5</td>
<td>6.9 SD 0.5</td>
<td>6.9 SD 2.5</td>
<td>6.9 SD 1.5</td>
</tr>
</tbody>
</table>

*The values are expressed as log2 dilution factor.

![Fig. 1. Immunoblot of SDS 10% gel ECL stained, showing the proteins labelled in E. coli O6:K− after reaction with: lane 1, MAb ARM 1-4; 2, MAb ARM 1-7; 3, MAb ARM 2-2. Mol.wt marker positions are indicated on the left of the figure.](image-url)
Fig. 2. Survival of BALB/c mice protected with ARM 1-4 and challenged with different lethal doses (2, 4 or 8 × LD50) of: ①, *E. coli* O6:K−; □, *E. coli* O7:K−; ②, *E. coli* O111:B4; ③, *E. coli* O128:K−; ■, control.

A different pattern of survival was observed when MAb ARM 1-7 was used. Overall, all the mice given this MAb survived a challenge of 2 × LD50, 4 × LD50 and 8 × LD50 of *E. coli* O6:K−. Furthermore, a protective effect against *E. coli* O111:B4 was observed when the mice were challenged with 2 × LD50 (60% survival). The protection recorded after challenge with 2 × LD50 of *E. coli* O7:K− and *E. coli* O128:K− was 30% and 20%, respectively, but no protection was shown against challenges of 4 × LD50 and 8 × LD50 (Fig. 3).

MAb ARM 2-2 protected mice challenged with *E. coli* O6:K− up to 8 × LD50 (100% survived with challenges of 2 and 4 × LD50, and 90% with 8 × LD50). No protection was observed in mice challenged with *E. coli* O7:K−. However, ARM 2-2 improved the survival of mice challenged with 2 × LD50 of *E. coli* O111:B4 and of *E. coli* O128:K− up to 50%. The survival of mice given 4 × LD50 of *E. coli* O111:B4 was 30% and that of mice challenged with *E. coli* O128:K− was 50%, but no protection was observed with challenges of 8 × LD50 of *E. coli* O111:B4 and *E. coli* O128:K− (Fig. 4).

Discussion

Sub-MICs of several antibiotics may alter the surface structure of members of the Enterobacteriaceae, influencing host–parasite relationships, such as serum bactericidal activity, opsonophagocytosis and complement consumption [14, 18, 23–26].

Fig. 3. Survival of BALB/c mice protected with ARM 1-7 and challenged with different lethal doses (2, 4 or 8 × LD50) of: ①, *E. coli* O6:K−; □, *E. coli* O7:K−; ②, *E. coli* O111:B4; ③, *E. coli* O128:K−; ■, control.
Fig. 4. Survival of BALB/c mice protected with ARM 2-2 and challenged with different lethal doses (2, 4 or 8 \(\times \) LD50) of: +, live \(E. coli \) O6:K--; \(\square \), \(E. coli \) O7:K--; \(\circ \), \(E. coli \) O111:B4; \(\bigtriangledown \), \(E. coli \) O128:K--; \(\blacksquare \), control.

A previous study demonstrated that the serum of mice immunised with \(E. coli \) O6:K− pre-exposed to sub-MIC of aztreonam (T-mice) contained antibodies towards protein epitopes that were not recognised by the serum of mice immunised with the untreated bacteria of the same strain (NT-mice). T-mice showed a higher degree of protection against lethal challenges with homologous and heterologous live bacteria than NT-mice. This protection did not seem to depend on quantitative differences in the antibody titre, but it was probably due to different kinds of antibody produced during the immunisation process [27].

In an attempt to identify the antibodies responsible for the protection, the splenocytes of T-mice were fused with SP1 plasmocytoma cells and those clones that produced antibodies recognising bacterial structures identified only by T mice pooled serum were selected. A recent study identified MAb MT 1F reacting with a protein epitope of a molecule of 12 kDa on the surface of the untreated \(E. coli \) O6:K−, which offered protection against lethal challenges of different serotype of \(E. coli \) [13].

In the present study three additional MAbs were characterised: ARM 1-4, ARM 1-7 and ARM 2-2, all of IgG1 isotype. The MAbs reacted with different patterns of proteins on \(E. coli \) O6:K−. This reactivity was probably due to the expression of the same epitope on proteins of different mol. wt, or to the re-arrangement of proteins following the denaturation process of the bacterial preparation used in immunoblotting studies. In these studies, sera drawn from T-mice as well as the MAbs presented different reactivity, as compared to sera from NT mice sera, especially to proteins of 15 and 40–41 kDa. It is possible that the antibiotic treatment of the bacterial preparation used in the immunisation procedure caused stress, with a re-arrangement of the bacterial protein profiles revealing several new antigenic determinants [13, 28–30]. Therefore, the antigenic presentation to the immune system by treated bacteria could have been different from that of untreated bacteria, triggering the production of different antibodies.

As shown in ELISA, the MAbs reacted not only with the immunising bacterial strain, but also with the other \(E. coli \) serotypes. Furthermore, despite variation in the binding capacity of the MAbs when tested against the same \(E. coli \) serotype, the reactivity of the single MAb did not change significantly when tested against different serotypes. Therefore, it is possible that the epitopes recognised by the MAbs may be shared by other \(E. coli \) strains. This observation agrees with the results of earlier crossed immuno-electrophoretic studies, in which cross-reactivity among OMPs of Enterobacteriaceae was observed [31].

In the protection studies, MAbs ARM 1-7 and ARM 2-2 protected mice with live challenges of \(E. coli \) O6:K− up to 8 \(\times \) LD50, while the protection offered by ARM 1-4 against the same bacterial challenge decreased at the higher bacterial loads. The MAbs presented a variable degree of cross-protection, which in all instances but one (mice protected with ARM 2-2 and challenged with \(E. coli \) O128:K−) was related to the bacterial load. These observations, combined with those of ELISA and immunoblotting experiments, present the hypothesis that protection may depend on the type of epitope bound by the MAb, more than on its binding capacity to either homologous or heterologous \(E. coli \) serotype. ARM 1-4, for instance, showed significantly greater binding to \(E. coli \) O6:K− in ELISA than ARM 2-2. However, the latter MAb gave protection up to a challenge of 8 \(\times \) LD50 of \(E. coli \) O6:K− whereas ARM 1-4 did not. Furthermore, ARM 1-7 which bound to \(E. coli \) O7:K− significantly less
well than ARM 1-4, was as effective as the latter in protecting animals against a challenge of 2×10^5 of
$E. coli$ O7: K$-$ (p = 0.9271, x^2 test). ARM 2-2, which showed a binding capacity similar to that of ARM 1-7,
completely failed to protect animals against lethal challenges with $E. coli$ O7: K$-$, whereas ARM 1-7
provided some degree of protection at 2×10^5. It was possible to correlate enhanced binding with
improved protection only in the case of MABs ARM 1-4 and ARM 2-2 against $E. coli$ O7: K$-$.

At this stage, the epitopes which are more directly involved in evoking protective antibodies are unknown
and further studies are needed to establish this.

The capacity of the MABs to improve serum opsonic activity in the passively immunised mice was probably
involved in the mechanism of protection. This can be underscored by the fact that the three MABs displayed
in vitro complement-dependent bactericidal activity against live $E. coli$. This observation parallels previous
findings which showed how MAB MT 1F protected against challenge with live bacteria [13].

In conclusion, the data show the involvement of the bacterial outer-protein structures in evoking protective
antibodies and provide evidence for the importance of
the epitope to which the immunoglobulins bind.

This work was partially supported by a grant from the ‘National
Research Council’ (CNR) – Targeted Project ‘Prevention and Control
Disease Factors’, Subproject ‘Causes of Infectious Diseases’.

References

1. Young LS, Proctor RA, Beutler B, McCabe WR, Sheagren JN.
University of California-Davis interdepartmental conference on
2. Increase in national hospital discharge survey rates for
31–34.
3. Silva AT, Bayston KF, Cohen J. Prophylactic and therapeutic
effects of a monoclonal antibody to tumor necrosis factor-α in
experimental Gram-negative shock. J Infect Dis 1990; 162:
421–427.
4. Tong NHH, Kaplan HS, Hebert JM et al. Protection against
Gram-negative bacteremia and endotoxemia with human
monoclonal IgM antibodies. Proc Natl Acad Sci USA 1985;
82: 1790–1794.
5. Ziegler EJ, Fischer CJ, Sprung CL et al. Treatment of Gram-
negative bacteraemia and septic shock with HA-1A human
monoclonal antibody against endotoxin. A randomised, double-
429–436.
of Gram-negative shock and death in surgical patients by
Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger
HE (eds) Escherichia coli and Salmonella typhimurium.
Cellular and molecular biology, vol 1. Washington, DC,
8. Morrin M, Reen DJ. Role of IgG subclass response to outer
membrane proteins in inhibiting adhesion of Pseudomonas
aeruginosa to epithelial cells. J Med Microbiol 1993; 39:
367–372.
on mice by monoclonal antibodies directed against outer-
34: 175–180.
10. Hamel J, Brodeur BR, Larose Y, Tsang PS, Belmaaza A,
Monplaisir S. A monoclonal antibody directed against a
serotype specific, outer-membrane protein of Haemophilus
11. Goldblatt D, Scadding VK, Wade AM, Turner MW,
Pandey JP. Association of Gm allotypes with the antibody
response to outer membrane proteins of a common upper
respiratory tract organism, Moraxella catarrhalis. J Immunol
proliferative response to outer-membrane proteins isolated from
13. Lun MT, Amancio AM, Raponi G et al. Murine monoclonal
antibody elicited with antibiotic-exposed Exscherichia coli
exerts protective capacity in experimental bacterial infections.
with antibiotic-treated Escherichia coli results in enhanced
protection against challenge with homologous and heterologous
15. Fazekas De St Groth S, Schiedegger D. Production of
monoclonal antibodies: strategy and tactics. J Immunol
16. Brodeur BR, Tsang P, Larose Y. Parameters affecting ascites
tumour formation in mice and monoclonal antibody
17. Eliasson M, Olsson A, Palmcrantz E et al. Chimeric IgG-
binding receptors engineered from staphylococcal protein A
and streptococcal protein G. J Biol Chem 1988; 263:
4323–4327.
18. Overbeek BP, Schellekens JP, Lippe W, Dekker BAT, Verhoef
J. Carunomon enhances reactivity of Escherichia coli with mono-
and polyclonal antisera to rough mutant Escherichia coli 35. J Clin
19. Laemmli UK. Cleavage of structural proteins during the
20. Towbin H, Stachelin T, Gordon J. Electrophoretic transfer of
proteins from polyacrylamide gels to nitrocellulose sheets:
procedure and some applications. Proc Natl Acad Sci USA
1979; 76: 4350–4354.
and clinical applications, 2nd edn. In: Peacock AR and
Harrington WR (eds). Monographs on physical biochemistry.
22. Ziegler EJ, McCutchan JA, Fierer J et al. Treatment of Gram-
negative bacteremia and shock with human antisera to a
23. Lun MT, Raponi R, Giordano A et al. Opsonic activity of
intravenous immunoglobulin on Gram-negative bacteria ex-
posed to a monocobactam antibiotic. Serodiagn Immunother
Influence of beta-lactam antibiotics and ciprofloxacin on
composition and immunogenicity of Escherichia coli outer
25. Overbeek BP, Verinina EM. Role of antibodies and antibodies
in aerobic gram-negative septicemia: possible synergism
between antimicrobial treatment and immunotherapy. Rev
26. Cevenini R, Sambri V, Massari F, LaPlaca M, Brocchi E,
DeSimone F. Complement-mediated in vitro bactericidal
activity of monoclonal antibodies reactive with outer-surface
protein OspB of Borrelia burgdorferi. FEMS Microbiol Lett
27. Raponi G, Lun MT, Loring G et al. Reactivity and protective
capacity of a polyclonal antisera derived from mice
immunized with antibiotic exposed Escherichia coli. J
28. Osborn MJ, Wu HCP. Proteins of the outer membrane of gram-
29. Kervella M, Fauchere J-L, Fourel D, Pages J-M. Immunolo-
gical cross-reactivity between outer membrane pore proteins of
Borrelia burgdorferi and Escherichia coli. J Immunol
Neidhart FC, Ingraham JL, Low KB, Magasanik B, Schaechter
Editor.