1887

Abstract

Lactulose exerts a beneficial effect on hepatic encephalopathy by decreasing toxic shortchain (iC4–nC6) fatty acid (isobutyrate, butyrate, isovalerate, valerate, isocaproate and caproate) production. However, the precise mechanism by which lactulose exerts this effect remains uncertain. This study investigated the effect of lactulose on faecal flora, particularly , which produces mostly iC4–nC6 fatty acids. An in-vitro faecal incubation system was used to estimate how lactulose influences production of short-chain (C2–nC6) fatty acids and lactate. Faecal specimens were collected from patients with liver cirrhosis, who carried in the colon. Supplementation of lactulose along with blood in faecal specimens decreased iC4–nC6 fatty acids production and increased acetate and lactate production, resulting in increased faecal acidity. These changes were statistically significant when compared with supplementation by blood alone. Quantitative faecal culture demonstrated that lactulose supplementation suppressed the growth of and spp. ( group), iC4–nC6 fatty acids-producing organisms. These results suggest that decreased faecal levels of iC4–nC6 fatty acids after lactulose supplementation may be related to suppression of iC4–nC6 fatty acids-producing faecal organisms, especially .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-1-80
1997-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/1/medmicro-46-1-80.html?itemId=/content/journal/jmm/10.1099/00222615-46-1-80&mimeType=html&fmt=ahah

References

  1. Muto Y. Clinical study on the relationship of short-chain fatty acids and hepatic encephalopathy. Jpn J Gastroenterol 1966; 63:19–32
    [Google Scholar]
  2. Muto Y., Takahashi Y., Kawamura H. Effect of short-chain fatty acids on the electrical activity of neo-, paleo-, and archicortical systems. Brain Nerve 1964; 16:601–608
    [Google Scholar]
  3. Bircher J., Muller J., Guggenheim P., Haemmerli U. P. Treatment of chronic portal-systemic encephalopathy with lactulose. Lancet 1966; 1:890–893
    [Google Scholar]
  4. Vince A., Dawson A. M., Park N., O’Grady F. Ammonia production by intestinal bacteria. Gut 1973; 14:171–177
    [Google Scholar]
  5. Castell D. O., Moore E. W. Ammonia absorption from the human colon. The role of nonionic diffusion. Gastroenterology 1971; 60:33–42
    [Google Scholar]
  6. Vince A., Killingley M., Wrong O. M. Effect of lactulose on ammonia production in a faecal incubation system. Gastroenterology 1978; 74:544–549
    [Google Scholar]
  7. Agostini L., Down P. F., Murison J., Wrong O. M. Faecal ammonia and pH during lactulose administration in man: comparison with other cathartics. Gut 1972; 13:859–866
    [Google Scholar]
  8. Mortensen P. B., Holtug K., Bonnen H., Clausen M. R. The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology 1990; 98:353–360
    [Google Scholar]
  9. Wolin M. J. Control of short chain volatile acid production inthe colon. In Binder H. J., Cummings J. H., Soergel K. H. (eds) Short chain fatty acids. Proceedings of the 73rd Falk Symposium Dordrecht: Kluwer Academic Publishers; 19943–10
    [Google Scholar]
  10. Holdeman L. V., Moore W. E. C., Cato E. P. Anaerobe laboratory manual. 4th edn Blacksburg, Virginia: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  11. Sneath P. H. A., Mair N. S., Sharpe M. E. Bergey’s Manual of systematic bacteriology. vol 2 Baltimore: Williams & Wilkins; 1986
    [Google Scholar]
  12. Ito Y., Nakamura T., Saito K. Pathophysiological role of intestinal flora in the development of hepatic encephalopathy, with special reference to floral alterations induced by antimicrobial agents. Micob Ecol Health Dis 1992; 5:1–13
    [Google Scholar]
  13. Nakamura S., Mikawa M., Nakashio S. Isolation of Clostridium difficile from the feces and the antibody in sera of young and elderly adults. Microbiol Immunol 1981; 25:345–351
    [Google Scholar]
  14. Kiyosawa I., Takase M., Yamauchi K. Lactulose and intestinal microflora infant nutrition. Bifidobacteria Microflora 1986; 5:27–35
    [Google Scholar]
  15. Terada A., Hara H., Kataoka M., Mitsuoka T. Effect of lactulose on the composition and metabolic activity of the human faecal flora. Microb Ecol Health Dis 1992; 5:43–50
    [Google Scholar]
  16. Mortensen P. B., Rasmussen H. S., Holtug K. Lactulose detoxifies in vitro short-chain fatty acid production in colonic contents induced by blood: implications for hepatic coma. Gastroenterology 1988; 94:750–754
    [Google Scholar]
  17. Krieg N. R., Holt J. G. Bergey’s Manual of systematic bacteriology. vol 1 Baltimore: Williams & Wilkins; 1984
    [Google Scholar]
  18. Muto Y., Bandoh K., Watanabe K., Katoh N., Ueno K. Macrolide accumulation by Bacteroides fragilis ATCC 25285. Antimicrob Agents Chemother 1989; 33:242–244
    [Google Scholar]
  19. Borriello S. P., Barclay F. E. An in-vitro model of colonisation resistance to Clostridium difficile infection. J Med Microbiol 1986; 21:299–309
    [Google Scholar]
  20. Rolfe R. D., Helebian S., Finegold S. M. Bacterial interference between Clostridium difficile and normal fecal flora. J Infect Dis 1981; 143:470–475
    [Google Scholar]
  21. Rolfe R. D. Role of volatile fatty acids in colonization resistance to Clostridium difficile. Infect Immun 1984; 45:185–191
    [Google Scholar]
  22. May T., Mackie R. I., Fahey G. O., Cremin J. C., Garleb K. A. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol 1994; 29:916–922
    [Google Scholar]
  23. Conn H. O., Lieberthal M. M. Mechanisms of action of lactulose. In The hepatic coma syndromes and lactulose Baltimore: Williams & Wilkins; 1979278–294
    [Google Scholar]
  24. Bown R. L., Gibson J. A., Sladen G. E., Hicks B., Dawson A. M. Effect of lactulose and other laxatives on ileal and colonic pH as measured by radiotelemetry device. Gut 1974; 15:999–1004
    [Google Scholar]
  25. Macbeth W. A. A. G., Kass E. H., McDermott W. V. Treatment of hepatic encephalopathy by alteration of intestinal flora with Lactobacillus acidophilus. Lancet 1965; 1:399–403
    [Google Scholar]
  26. Loguercio C., Del Vecchio Blanco C., Coltori M. Enterococcus lactic acid bacteria strain SF68 and lactulose in hepatic encephalopathy: a controlled study. J Int Med Res 1987; 15:335–343
    [Google Scholar]
  27. Sugawara N. The fecal microflora of cirrhotic patients and the therapy of hyperammonemia. J Tokyo Worn Med Coll 1992; 62:1586–1597
    [Google Scholar]
  28. Patil D. H., Westaby D., Mahida Y. R. Comparative modes of action of lactitol and lactulose in the treatment of hepatic encephalopathy. Gut 1987; 28:255–259
    [Google Scholar]
  29. Hayakawa K., Mizutani J., Wada K., Masai T., Yoshihara I., Mitsuoka T. Effect of soybean oligosaccharides on human faecal flora. Microb Ecol Health Dis 1990; 3:293–303
    [Google Scholar]
  30. Uribe M., Dibildox M., Malpica S. Beneficial effect of vegetable protein diet supplemented with psyllium plantago in patients with hepatic encephalopathy and diabetes mellitus. Gastroenterology 1985; 88:901–907
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-1-80
Loading
/content/journal/jmm/10.1099/00222615-46-1-80
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error