Diagnosis of infections with Shiga-like toxin-producing
Escherichia coli by use of enzyme-linked immunosorbent
assays for Shiga-like toxins on cultured stool samples

D. LAW, A. A. HAMOUR†, D. W. K. ACHESON‡, H. PANIGRAHI§, LEELA A. GANGULI
and D. W. DENNING*†

Department of Microbiology and *Department of Medicine, Hope Hospital, Eccles Old Road, Salford M6 8HD.
†University of Manchester, Regional Department of Infectious Diseases and Tropical Medicine, Monsall Hospital,
Newton Heath, Manchester M10 8WR, ‡Department of Medicine, Division of Geographic Medicine and Infectious
Diseases, 750 Washington Street, NEMCH #41, Boston, MA, USA and §Department of Microbiology, Monsall and
North Manchester General Hospitals, Manchester M8 6RB

Summary. Shiga-like toxin-producing (SLT) Escherichia coli, particularly those belonging to
serogroup O157, are responsible for haemorrhagic colitis, haemolytic uraemic syndrome
and some cases of gastro-enteritis. The rapid and reliable diagnosis of all these infections is
necessary for correct patient management and for epidemiological reasons, but is rarely
possible with present methods. We compared the efficacy of two methods, (i) the culture of
faeces in broth that contained mitomycin C followed by enzyme-linked immunosorbent
assay (ELISA) for SLTs, and (ii) the culture of faeces on sorbitol MacConkey agar (SMA),
in the detection of infections caused by SLT-producing E. coli. SLT-producing E. coli O157
strains were isolated on SMA from 42 of 475 faecal samples, but SLTs were detected by
ELISA in culture supernates or lysates of 54 of 475 samples. SLT-producing E. coli strains
were isolated subsequently from 11 of 12 ELISA-positive, SMA culture-negative samples by
a colony blot technique. In four cases, SLT-producing E. coli of serogroups other than O157
were isolated and in seven cases E. coli O157 was isolated in small numbers. The ELISA is a
rapid and sensitive technique for the diagnosis of SLT-producing E. coli infection, especially
where low numbers of the organism are present in faeces and when the infection is caused by
a serogroup other than O157.

Introduction

Human infections associated with strains of Escherichia coli that produce Shiga-like toxin (SLT) or
verotoxin present as non-bloody diarrhoea, bloody diarrhoea or haemorrhagic colitis (HC).1-4
Haemolytic uraemic syndrome (HUS) and thrombotic thrombocytopenic purpura are also associated with infection
with SLT-producing E. coli.1-3,4 Although one serotype, O157:H7, predominates in most human infec-
tions with SLT-producing E. coli, infections can be caused by at least 30 O serogroups of E. coli.4
The true incidence of SLT-producing E. coli infection is probably underestimated because of the limitations of the
currently available diagnostic tests. The culture on sorbitol MacConkey agar (SMA) as used by many
laboratories only detects E. coli strains of serogroup O157 that do not ferment sorbitol, whereas most other
E. coli serotypes ferment sorbitol.5 Moreover, the numbers of SLT-producing E. coli in the faeces of
patients with HC and HUS decreases markedly as the
diseases progress and this reduces the probability of isolating the infecting organism later in the diseases.6
Shiga-like toxins can be detected in faeces and from cultures of E. coli with cytotoxicity assays5,7 and toxin-
neutralising antibodies are required to ensure specificity. DNA probes that hybridise with SLT-I or
SLT-II have been developed8 and have proved useful in clinical studies.9-11 The polymerase chain reaction
(PCR) has also been applied to the detection of SLT-producing E. coli in clinical samples.12 At present these
techniques are not widely available in routine clinical microbiology laboratories.

Immunological techniques for detecting SLTs, such as enzyme-linked immunosorbent assays (ELISA),
have been described.13,14 Recently, we developed a diagnostic system based on the culture of faecal
samples in broth containing mitomycin C, followed by ELISA for SLT-I and -II.16 This assay is based on the
principle that the toxins produced in most human SLT-producing E. coli infections are mediated by
bacteriophage and are, therefore, inducible with mitomycin C.16 This method amplified toxin production
and allowed detection of low numbers (< 1 in 1000) of

Received 26 April 1993; revised version accepted 1 Oct. 1993.
SLT-II-producing organisms in spiked faecal samples. Because the method detects toxins it is independent of serotype and can also detect infection by serogroups other than O157.

In the present study, standard detection methods for SLT-producing *E. coli* by culture on SMA were compared directly with the ELISA assay in a prospective study, and the results were correlated with the clinical presentation of patients with diarrhoea.

Materials and methods

Clinical definitions

The diagnosis of HUS was made on clinical grounds on the basis of acute renal impairment and microangiopathic anaemia. HC was defined as severe bloody diarrhoea with very little stool content, abdominal pain and little or no fever. Bloody diarrhoea was defined as the passage of frequent bloody stools.

Samples

Samples of faeces were obtained from patients admitted to Hope Hospital, Salford, from the community around the hospital and from patients admitted to the Regional Department of Infectious Diseases and Tropical Medicine at Monsall Hospital, Manchester. Therefore, these samples were from relatively unselected cases of diarrhoea although they tended to have more severe illness. In the latter part of the study, samples were received from other laboratories in the Region, usually when conventional cultures for enteric pathogens were negative or when *E. coli* O157 had been isolated, for confirmation of toxin production by the isolate. After receipt, samples were stored at 4°C before testing.

Faecal samples were allocated to one of four patient groups based upon clinical criteria: group 1 comprised patients with HUS; group 2, patients with HC; group 3, patients with a history of bloody diarrhoea and group 4, patients with non-bloody diarrhoea.

Bacteriological procedures

Samples were examined for bacterial, viral and protozoal pathogens by protocols in place at the referring laboratory. Faecal samples for SLT-producing *E. coli* examination were inoculated on to Sorbitol MacConkey Agar No. 3 plates (SMA; Unipath) which were examined for the presence of sorbitol non-fermenting (SNF) colonies. Slide agglutination tests on SNF colonies were performed with *E. coli* O157 antiserum (Difco). Organisms that reacted with the antiserum were then tested for toxin production as described below. When SNF colonies were scanty or several colonial types of SNF were observed, each type was inoculated on to SMA and agglutination tests were repeated after overnight incubation. Isolates that reacted with *E. coli* O157 antiserum were then identified by the API 20E system (bioMérieux, Basingstoke).

Culture conditions

For ELISA, c. 0·1 g of faeces were emulsified in 3 ml of sterile phosphate-buffered saline (PBS), pH 7·4 and 30 μl of the suspension were used to inoculate 3 ml of Tryptone Soy Broth (TSB; Difco) containing mitomycin C (TSB+mit C; Sigma) 200 ng/ml. Broths were incubated for 18 h at 37°C with constant shaking (200 rpm). Cultures were centrifuged and the supernates were used for SLT-II testing. The cell pellet was resuspended in 300 μl of polymyxin B (Sigma) 2 mg/ml in PBS, incubated at 37°C for 10 min and then centrifuged. The clear supernate was removed and used to test for SLT-I.

ELISA procedure

The ELISA was performed as described previously, hydatid cyst material was used to capture toxin. Rabbit anti-SLTI and anti-SLTII, prepared as described previously, and goat anti-rabbit alkaline phosphatase conjugate were used to detect bound toxin. After 100 samples had been processed in this way, the assay for SLT-II was modified in that a monoclonal antibody (MAb), 2B1, specific for SLT-II B subunit, was used to capture this toxin instead of hydatid cyst material, because this technique was shown to be more sensitive. Mouse ascitic fluid (3 μl in 10 ml of PBS) was used to coat the assay plate. To quantify the amount of toxin in the supernates and lysates, Shiga toxin and SLT-II, purified as described previously and diluted in PBS (range 1·6–100 ng/ml) were used as standards in the ELISA. The positive/negative cut-off point for both toxins in culture preparations was 1·6 ng/ml. As a control, *E. coli* O157:H7 (strain 933 provided by the late Dr H. Williams-Smith) which produces SLT-I and II, was inoculated into TSB+mit C and processed at the same time as the cultures.

The ability of *E. coli* colonies to produce SLTs was tested after growth in TSB+mit C. Supernates and cell lysates were prepared and tested as described above. When a sample was ELISA-positive, but SMA-negative, sweeps of colonies were inoculated into TSB+mit C, incubated as described above, and cell lysates and supernates were tested by ELISA. If these preparations gave positive results individual colonies were then tested for their ability to produce toxin.

Colony blot technique

Colony blots were performed on 12 ELISA-positive samples which gave negative results on SMA culture, and on 14 samples from patients with HUS which gave negative results by both ELISA and SMA culture. Tryptone soy agar (TSA) containing mitomycin C 200 ng/ml was prepared. Two 0·45-μm nitrocellulose filters (BioRad, Hemel Hempstead) were placed on top
of each other on a TSA plate and 25 μl of faecal suspension (0.5 g in 10 ml of PBS) was spread over the surface of the upper filter. The plate was then incubated at 37°C for 18 h which resulted in c. 200–1000 cfu/plate. The lower filter was removed and then blocked with bovine serum albumin 1 % in PBS for 1 h at 22°C. The filter was then probed with rabbit antitoxin to SLT-I and -II diluted 1 in 6000 in PBS for 1 h at 22°C. After washing in PBS-Tween 20 0.05 % the filters were exposed to goat anti-rabbit IgG phosphatase conjugate diluted 1 in 6000 in PBS for 30 min at 22°C. After washing in PBS-Tween 20, the filter was finally developed with nitroblue tetrazolium-bromo-chloroindoxyl phosphate (BioRad). The presence of purple areas on the filter indicated potential toxin-producing colonies. The filter was then aligned with the top filter and blot-positive colonies were picked off the top filter, subcultured for purity, and tested for toxin production by ELISA. As a control for colony blots a mixture of E. coli O157: H7 (strain 933) with E. coli C600 was processed as if it were a faecal suspension.

The toxigenic potential of O157 and non-O157 isolates was confirmed by the Division of Enteric Pathogens, Central Public Health Laboratory, London.

Results

Correlation of ELISA with SMA culture

A total of 475 faecal samples from 457 patients was examined in this study. E. coli O157 strains were isolated by SMA culture from 42 samples. However, 54 samples gave positive ELISA results (43 SLT-II only, nine SLT-I and -II and two SLT-I only; table). Therefore, the ELISA detected 12 apparent SLT-producing E. coli infections that were not detected by SMA culture. SLT-producing E. coli were subsequently detected in 11 of 12 ELISA-positive, SMA culture-negative samples by the colony blot technique and by testing colony sweeps. In seven instances, low numbers of E. coli O157 were isolated and in four instances SLT-producing E. coli of serogroups other than O157 were isolated (two serogroup O128, one serogroup O103, the one other untyped). E. coli colonies from the remaining ELISA-positive, SMA-negative sample gave negative results by colony blot.

In each case of SLT-producing E. coli infection in this study, the organism was isolated as the sole recognised pathogen. Thirty-six samples yielded a pathogen other than an SLT-producing E. coli and in none of these cases was the SMA culture positive for E. coli O157 or the ELISA positive for SLT-I or -II.

Clinical correlation

All of 10 faecal samples from cases of HC, were ELISA-positive for SLT-II after culture, but only eight yielded E. coli O157 on SMA. The remaining two samples gave positive results for E. coli O157 on colony blot but the organisms were present in very low numbers and were likely to have been overgrown by non-O157 serogroups on SMA. Twenty-five faecal samples were examined from 19 patients with clinically typical HUS. Eleven (44 %) samples from nine patients were ELISA-positive but only eight (32 %) of these samples yielded E. coli O157 directly on SMA. The remaining three samples yielded SLT-II-producing E. coli isolates on colony blot which were shown subsequently to be serogroup O157. Fourteen samples from HUS patients, most of which were obtained late in the illness, gave negative results in all tests.

Of 320 samples from patients with a history of bloody diarrhoea, 28 (8.8 %) were ELISA-positive and 23 (7.2 %) of these yielded E. coli O157 on SMA. Four ELISA-positive, SMA culture-negative samples yielded SLT-producing E. coli belonging to serogroups other than O157. In one case that was ELISA-positive for SLT-II, no SLT-producing E. coli was isolated.

In 120 samples from patients with non-bloody diarrhoea, SLT-producing E. coli were detected in five samples (4 %) by ELISA but only 3 samples (2.5 %) yielded E. coli O157 on SMA. In the remaining two cases, E. coli O157 was isolated by colony blot.

ELISA performance

The mean A405 for the 1.6 ng/ml standards of SLT-I and SLT-II were 0.35 (range 0.30–0.49) and 0.27 (range 0.23–0.35), respectively, with a substrate-con-
taining well as blank. Typical negative samples had A_{405} in the SLT-I and SLT-II ELISA of 0-0.12 and 0-0.09, respectively. Samples that contained SLT-I typically had A_{405} of 0.5-2 for SLT-II-positive samples the range of A_{405} values was 0.4-2. Over 80% of samples containing SLT-producing E. coli gave A_{405} values > 2.

If SLT-producing E. coli isolation on either SMA or by colony blot was regarded as the definitive test, the ELISA had a sensitivity and specificity of 100% and 99.7%, respectively. Positive and negative predictive values were 98.1% and 100%.

Discussion

The purpose of this study was to compare the efficacy of SLT ELISA on supernates and cell lysates after culture of faeces in broth containing mitomycin C with culture on SMA in the detection of infections caused by SLT-producing E. coli. The ELISA method proved superior to SMA culture and detected 11 (20%) of cases of infection with SLT-producing E. coli that were not detected by culture on SMA. Low numbers of E. coli O157 were detected subsequently in seven of these samples and non-O157 SLT-producing E. coli were isolated from four samples. It is not surprising that the SMA method failed to detect infection caused by non-O157 serogroups as these four isolates fermented sorbitol and were indistinguishable from normal flora E. coli on SMA. The ability of the ELISA to detect SLT-producing E. coli of serogroups other than O157 is a distinct advantage over SMA culture.

The apparent incidence of SLT-producing E. coli infection in this study is high (53 of 475 cases) but this is not a reflection of the true incidence of this infection. Eleven isolates were from a single outbreak and 36 faecal samples (including eight from the outbreak) were sent for confirmation of E. coli O157 isolation.

Because many laboratories are unable to examine samples for SLT-producing E. coli of serogroups other than O157, there is little information concerning the incidence of E. coli strains other than O157 in disorders other than HUS, although it is thought to be lower than the incidence of E. coli O157.18,19 In this study 439 samples formed a blind prospective evaluation of the ELISA method. Seventeen of the samples yielded SLT-producing E. coli, of which 13 were E. coli O157 and four (24%) were non-O157 SLT-producing E. coli. All four non-O157 isolates were from cases of bloody diarrhoea. The high incidence of serogroups other than O157 as a cause of bloody diarrhoea may reflect the use of a sensitive diagnostic test. By means of this method we can now ascertain the true incidence of non-O157 SLT-producing E. coli as a cause of diarrhoea.

There was one apparent false positive reaction in the 475 samples examined by the ELISA method. The culture supernate of this sample contained low (12.5 ng/ml) quantities of SLT-II, but SLT-producing E. coli were not isolated from this sample by SMA, colony blot or colony sweeps. The reason for this is not clear but may be due to infection caused by an SLT-producing E. coli present in very low numbers.

The diagnosis of HUS is clinical but the detection of SLT-producing E. coli can confirm the diagnosis and is of particular value in unusual cases. In this study, the ELISA detected three cases of E. coli O157 infection that were not detected by SMA. The low isolation rate of SLT-producing E. coli in HUS cases in this study (11 of 25) is similar to that found in other studies and is likely to be due to loss of pathogens as a result of delays in receiving samples. This was illustrated in one case when three samples were received from one child with HUS and were consistently negative by ELISA, SMA culture and colony blot. The samples were 1-week-old before they were examined in this study and E. coli O157 had been isolated previously on SMA at the referring hospital. Serological techniques have been employed successfully in diagnosing some infections that are culture negative.20

The main disadvantage of the ELISA method is that, although it detects the presence of toxin-producing organisms in a broth culture, the organism is not available for further characterisation by serotyping, phage typing or toxin studies. If E. coli O157 is present in large numbers it will be detected on SMA. However, if low numbers of E. coli O157 or a non-O157 SLT-producing E. coli are present in the faeces, the ELISA will be positive but no pathogens will be detected on SMA. In such cases we have used a colony blot technique and tested colony sweeps to obtain pure cultures of toxin-producing strains for further characterisation. Alternatively, mixed cultures that are ELISA positive could be examined by gene probe techniques.

The culture of faecal samples in broth containing mitomycin C followed by ELISA for SLTs is more sensitive than culture on SMA alone, detects infections in which low numbers of organisms are present and those caused by non-O157 serogroups. We propose that this technique, used routinely in conjunction with culture on SMA, is an economical method of providing a rapid diagnosis of most human gastrointestinal infection caused by SLT-producing E. coli.

We thank the Division of Enteric Pathogens, Central Public Health Laboratory, Colindale Avenue, London for serotyping and toxin confirmation tests. D. W. K. A. was supported by a Health Sciences for the Tropics Partnership in Research and Training Grant from the Rockefeller Foundation, New York, USA.
References

