Restricted distribution of *Streptococcus milleri* carbohydrate type antigens amongst other viridans streptococci

M. INOUE, NOBUKO MATSUNOSHITA and T. YAKUSHIJI

Department of Preventive Dentistry, Kagoshima University Dental School, 8-35-1 Sakuragaoka, Kagoshima 890, Japan

Summary. The distribution of oral *Streptococcus milleri* carbohydrate type antigens in other viridans streptococcus species was examined. Rantz-Randall extracts of cells of the test strains grown in broth containing glucose were allowed to react with typing or grouping antisera for *S. milleri* serotypes a-k, or Lancefield groups A-G and K. Of 93 strains comprising more than 12 streptococcal species that included *S. mutans* and *S. sanguis* complexes, only 15 *S. salivarius* strains and one *S. mitis* strain were immunologically related to *S. milleri* serotype f. Unlike *S. milleri* strains, *S. salivarius* type f strains belonged to Lancefield group K, whereas the *S. mitis* strain was closely related to *S. milleri* serotype f but did not react with any of the Lancefield grouping antisera tested. Results suggest that oral *S. milleri* strains can be distinguished serologically from other oral viridans streptococci and that the typing antisera used in our researches might differentiate *S. milleri* isolates from the mouth from those associated with systemic purulent infections.

Introduction

Viridans streptococci designated *Streptococcus milleri* are commensal organisms on mucosal surfaces in the oral cavity, nasopharynx and gastrointestinal tract. Pathogenic strains are frequently isolated from purulent lesions in various systemic infections. However, these clinically important streptococci comprise a biochemically and genetically heterogeneous collection of strains referred to variously as *Streptococcus MG*, *S. intermedius*, *S. anginosus* or *S. constellatus*. Their taxonomic status is still unclear.

S. milleri strains are also serologically heterogeneous; many investigators have demonstrated that they frequently carry Lancefield group antigens F, A, C or G, or Ottens type antigens I to V, or both. Our recent studies divided oral *S. milleri* isolates into at least 11 serotypes, a-k. Approximately 80% of oral *S. milleri* isolates and 40% of isolates from systemic purulent infections have been identified to one of the serotypes. In this regard, it is of interest to know the distribution of *S. milleri* type antigens in the many other species of viridans streptococci indigenous to the oral cavity. The present study examined the possibility of distinguishing serologically *S. milleri* from other viridans streptococci and assessed the usefulness of typing antisera for identifying oral *S. milleri* in systemic foci. In this study, the term *S. milleri* is used as recommended.

Materials and methods

Streptococcal strains

Ninety-three strains of more than 12 viridans streptococcal species were examined (table). The reference strain of *S. milleri* serotype f. ATCC9895 (Lancefield group F), was also used as required, as in previous studies of serotypes.

Streptococcal strains were grown in Brain Heart Infusion (BHI) Broth (Difco) anaerobically at 37°C overnight.

Immunological methods

Cell-surface carbohydrate antigens were extracted from cells grown in broth containing glucose by the method of Rantz and Randall as described previously. The 11 *S. milleri* type-specific antisera, a–k, were prepared as before. Lancefield group antisera (A–G, K) were purchased from Difco Laboratories.

 Reactivity of antigen extracts with the typing antisera was first examined in a capillary precipitation test at room temperature for up to 30 min. To confirm the specificity of the precipitin reaction for *S. milleri* type antigens, double immunodiffusion analysis was performed in a Noble Agar (Difco) 1% plate. The antigen preparations that reacted with the typing sera were examined further for reactivity with the Lancefield grouping antisera in similar tests.

Results

Of 93 streptococcal strains tested with the 11 typing...
Table. Reactivity of viridans streptococcal strains with *S. milleri* typing antisera and Lancefield grouping sera

<table>
<thead>
<tr>
<th>Streptococcal species</th>
<th>Strain nos.</th>
<th>Number of strains</th>
<th>Serological reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. salivarius</td>
<td>ATCC7073†, ATCC9222†, ATCC9759†, ATCC27945†, ATCC31067†, HHTR, HT9R*, HT9R-4r-1*, M1, M3, M6, Y1, Y2, S1, S2, ATCC9758†, ATCC13419†, ATCC23957†, HT3R-3r-5*, M2, M4, M5, Y3, Y5, Y6, S3, S4, S5, S6</td>
<td>15</td>
<td>f</td>
</tr>
<tr>
<td>S. mutans</td>
<td>HS6 (S. cricetus ATCC19462†), HSI, FIL, E49</td>
<td>4</td>
<td>—</td>
</tr>
<tr>
<td>S. sanguis</td>
<td>ATCC10356*, OMZ29*, ST102*, ST107*, ST120*, ST129*, 9H</td>
<td>7</td>
<td>—</td>
</tr>
<tr>
<td>S. gordonii</td>
<td>ATCC10558†, M-5*, DLI</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>S. mitis</td>
<td>ATCC33399†, ATCC6249*</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>S. oralis</td>
<td>ATCC35037†, ATCC10557*, ATCC9891†, H1</td>
<td>4</td>
<td>f</td>
</tr>
<tr>
<td>S. parasanguis</td>
<td>ATCC15912†, ATCC15911†, ATCC15909‡</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>S. intermedius</td>
<td>31, 32, 306</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>S. MG</td>
<td>ATCC15910†, ATCC15913‡</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Others</td>
<td>S. faecalis SS499*, S. pyogenes SV*, S. bovis DS96*</td>
<td>3</td>
<td>—</td>
</tr>
</tbody>
</table>

ATCC, American Type Culture Collection; †, type strain.
Strains were obtained from Drs S. Hamada (Osaka University)*, T. Tsurumizu (Kitasato Institute)t, S. Shizukuishi (Osaka University)$, and T. Koga (National Institute of Health, Tokyo)§, respectively; the others were stock cultures from our laboratory.

f, serotype f; K, Lancefield group K; f, f-cross-reactive; —, untypable and ungroupable; nd, not determined.

In the immunodiffusion analysis, the antigen extracts of 15 *S. salivarius* strains produced a precipitin line with type f antiserum which fused completely with that formed between the homologous antigen of the serotype f type strain ATCC9895 (figure). However, the precipitin lines crossed with the line formed with the group K antiserum. The antigen from one *S. mitis* strain made a precipitin line with f antiserum; this crossed with the line produced between the homologous antigen of the type f reference strain, but did not react with any grouping serum.

Discussion

Of the 93 strains of various viridans streptococci, mostly indigenous to the oral cavity, only 15 *S. salivarius* strains and one *S. mitis* strain were immunologically closely related to oral *S. milleri* (table). The *S. milleri* type f antigen was the only one detected in other viridans streptococci, mainly in *S. salivarius*. However, the type f *S. salivarius* strains carried simultaneously the Lancefield group K antigen, whereas the type f *S. milleri* strains, including the type f vaccine strain ATCC9895, generally carry the group F antigen.14-16 In addition, one *S. mitis* strain cross-reacted with type f antiserum, which was not observed with oral *S. milleri* strains.14-16 Strains of type f and

In the immunodiffusion analysis, the antigen extracts of 15 *S. salivarius* strains produced a precipitin line with type f antiserum which fused completely with that formed between the homologous antigen of the serotype f type strain ATCC9895 (figure). However, the precipitin lines crossed with the line formed with the group K antiserum. The antigen from one *S. mitis* strain made a precipitin line with f antiserum; this crossed with the line produced between the homologous antigen of the type f reference strain, but did not react with any grouping serum.

Figure. Immunodiffusion reactions of the Rantz-Randall extracts from the serotype f and group K *S. salivarius* strains with the anti-f and -group K sera. The antigen extract of *S. salivarius* M3 (well 2) produced a precipitin line with the anti-f serum (well A). This completely fused with the line that antigen extracts from the serotype f *S. milleri* reference strain ATCC9895 (well 1) formed with its homologous anti-f serum, but crossed with the line formed with the anti-group K serum (well B).
group K and type f-cross-reactive and ungroupable have not been identified in S. milleri. These results indicate that the 11 typing sera in the previously proposed typing system for oral S. milleri can be used, particularly in combination with some Lancefield grouping antisera, to distinguish serologically S. milleri from other viridans species.

Our previous studies have demonstrated that about 40% of S. milleri isolates from systemic purulent foci carry one of the type antigens found in oral S. milleri isolates; their physiological characteristics are also very similar to the oral strains. However, vaginal isolates of S. milleri did not react with any of our typing antisera (unpublished data), which is consistent with earlier findings that vaginal strains are physiologically different from those of oral origin. This, together with the results presented above, would indicate that the typing antisera could also be used to characterise the oral or non-oral origin of clinical S. milleri isolates from systemic foci and might be useful in identifying oral S. milleri in systemic infections.

It is known that the strains of S. salivarius type I carry Lancefield group K antigen and type f antigen in addition to Lancefield group F antigen and Ottens type I11 antigen. The S. milleri type f antigen, which the vaccine strain ATCC9895 (called S. MG or S. intermedius) carries, was detected in 15 S. salivarius strains (table) and its immunodeterminant was clearly different from that of the group K antigen (figure). These findings strongly suggest that the S. milleri type f antigen is identical to the “sallivarius” antigen but not to the Ottens type III antigen.

It should be noted that c. 30% of S. milleri isolates hitherto examined and the five S. intermedius or S. MG strains tested in this study did not react with any typing antisera (table). Furthermore, recent studies have shown that S. salivarius and S. intermedius can be divided into four and five serovars on the basis of their cell-surface carbohydrate type antigens. Conclusions regarding the immunochemical relationship between S. salivarius (particularly type I) and S. milleri (particularly S. MG or S. intermedius) depend upon further chemical and immunological studies on their cell-surface antigenic components.

We thank Drs S. Hamada (Osaka University), T. Koga (National Institute of Health, Tokyo), S. Shizukushi (Osaka University) and T. Tsurumizu (Kitasato Institute) for providing reference strains and Dr Margaret Duncan (Forsyth Dental Center) for correcting our English. We also thank Ms Izumi Yasunaga for typing the manuscript.

References