Cytopathic effects of *Helicobacter pylori* on cultured mammalian cells

H. KONISHI, M. ISHIBASHI*, M. G. MORSHED and T. NAKAZAWA

Department of Microbiology, Yamaguchi University School of Medicine and *School of Allied Health Science, Yamaguchi University, 1144 Kogushi, Ube, Yamaguchi 755, Japan

Summary. Cytopathic effects of broth-culture filtrates from eight clinical isolates and one reference strain of *Helicobacter pylori* on three cultured mammalian cell lines were investigated. All the strains, including NCTC 11637, produced cytotoxic factors that caused intracellular vacuolation on these cell lines. AGS and SfI Ep cells were more sensitive than HEp-2 cells. To examine the role of urease in the cytotoxic effect, a urease-negative mutant was produced. Filtrates from both wild-type and mutant strains produced similar vacuolation on SfI Ep cells in the absence of urea, suggesting that *H. pylori* produces a cytotoxic substance other than urease. In contrast, ammonia alone, or jack bean urease with urea, also induced rounding and detachment of SfI Ep cells, whereas ammonium salts induced the production of small vacuoles. The combination of the broth filtrate of the wild-type strain and urea induced vacuolation followed by rounding and detachment of SfI Ep cells. Evidence is presented that the latter changes are due to ammonia produced during incubation. Nevertheless, the amounts produced were less than that needed to induce cytopathic effects by itself. These results suggest that the cytotoxic substance induces intracellular vacuolation, and that the vacuolated cells are more susceptible to killing by ammonia. Thus both the cytotoxic substance and urease may contribute to the lethal cytotoxicity of *H. pylori in vitro.*

Introduction

Helicobacter pylori (formerly *Campylobacter pylori*) is an aetiological agent of active chronic gastritis and a possible contributor to peptic ulceration.² ⁴ Although intracellular vacuolation has been observed by electronmicroscopy in gastric epithelial cells from patients with chronic gastritis,⁷ ⁸ the mechanism by which this damage is produced is still unclear. Hupertz et al.⁹ demonstrated that the lysates from *H. pylori* were cytotoxic for Chinese hamster ovary cells and also lethal for mice after intra-peritoneal injection. Leunk and co-workers¹⁰ ¹¹ reported that 55% of isolates of *H. pylori* tested produced cytoxins that induced non-lethal cytopathic effects (CPEs) *in vitro* in seven of nine mammalian cell lines, and suggested that the cytoxin was produced *in vivo*. Figura et al.¹² demonstrated that cytoxin-producing *H. pylori* strains were isolated more frequently from patients with peptic ulcer disease than from patients with chronic gastritis only. In addition, Cover et al.¹³ reported that broth-culture supernates containing antigenic 128- and 82-kDa proteins induced vacuolation in HeLa cells. In contrast, Barer et al.¹⁴ and others¹⁵ ¹⁷ have suggested that the urease activity of *H. pylori* is responsible for CPEs. To clarify the roles of cytoxins and urease in CPEs *in vitro*, we examined "wild-type" *H. pylori* strains and a urease-negative mutant of one of these strains.

Materials and methods

Bacterial strains

Ten strains of *H. pylori* were used in this study. Reference strain NCTC 11637 was obtained from Dr Inoue, Department of Internal Medicine 4, Hyogo College of Medicine, Nishinomiya, Japan. Eight strains were isolated from antral biopsy specimens from patients with chronic gastritis or gastric ulcer, or both, in the First Department of Internal Medicine, Yamaguchi University School of Medicine, Ube, Japan.¹⁸ A urease-negative mutant, CPY4111, was obtained from one of these, strain CPY4110, by exposure to N-methyl-N'-nitro-N-nitrosoguanidine (NTG; see below).

Cultivation of bacteria

Cells grown on Brucella Agar (BBL, Cockeysville, MD, USA) containing fetal calf serum (FCS; Flow Laboratories, Irvine, Scotland) 5% at 37°C for 2 days.
in a micro-aerophilic atmosphere (O₂ 5%, CO₂ 10%, N₂ 85%), were transferred into Brucella Broth (BBL) containing FCS 10% and yeast extract (Difco, Detroit, USA) 1.2% (FCS-YB broth) and incubated for 2 days with shaking under the same conditions on a rotary shaker. Cultures were harvested by centrifugation and broth-culture filtrates (broth filtrates) were obtained from culture supernates by passing through a 0.22-μm membrane filter.

Isolation of urease-negative mutants

The cells of strain CPY4110 cultivated in 30 ml of FCS-YB broth described above, were harvested by centrifugation, washed once with 0.1 M citrate buffer (pH 5.0), and suspended in 2 ml of the same buffer. NTG was added at final concentrations of 0.02, 0.04 or 0.08 mg/ml, followed by incubation at 28°C for 90 min without shaking. The cells were washed twice in M9 medium19 and spread on TEP Agar plates (Eiken, Tokyo, Japan), which were incubated at 37°C for 4 days under the micro-aerophilic conditions. Approximately 0.4, 0.15 and 0.1% of the cells remained viable after treatment with 0.02, 0.04 and 0.08 mg/ml, respectively. Each colony on the plates was transferred into FCS-YB broth in 96-well microtitration plates (Falcon, Lincoln Park, USA) and incubated under the same conditions as above. To screen for urease-negative mutants, the following two procedures were used. (i) Cells grown in wells in microtitration plates were transferred on to TEP agar plates, and incubated micro-aerobiologically at 37°C for 3 days. They were then covered with a sheet of filter paper (Whatman 3MM) dipped in urea-medium (yeast extract 0.1 g/L; potassium dihydrogen phosphate, anhydrous 9.1 g/L; disodium hydrogen phosphate, anhydrous 9.5 g/L; urea 20.0 g/L; phenol red, 0.01 g/L). (ii) Cells grown in wells were transferred on to Brucella Agar plates containing horse serum (Hanabiken, Osaka, Japan) 5% and incubated micro-aerobiologically at 37°C. After 3 days, the plates were overlaid with 2% urea-agar. The colonies which did not show colour within 5 min by either method were judged to be urease-negative.

Assay of cytotoxicity

Cells of AGS (human gastric adenocarcinoma), Sf1Ep (cottontail rabbit epidermis) and HEp-2 (human larynx epidermoid carcinoma) cell lines obtained from the American Type Culture Collection were used in assays of cytotoxicity.

Cells were seeded into 24-well culture plates (Falcon) to produce a confluent monolayer after incubation for 2 days at 37°C. Earle's Minimal Essential Medium (MEM; Flow) supplemented with non-essential amino acids and FCS 10% (FCS-MEM) was used for culture of Sf1Ep and HEp-2 cells, and Ham's F12 medium (Flow) supplemented with FCS 10% (FCS-F12) for AGS cells. After incubation, the culture medium was removed, and two-fold dilutions of broth filtrates (1 ml) in FCS-MEM or FCS-F12 were added to the wells followed by incubation at 37°C for 48 h. Cells were observed at the indicated times by phase-contrast microscopy to determine cytotoxicity. The titre of cytotoxic activity was the highest final dilution of the sample that caused degenerative changes including intracellular vacuolation in more than 25% of the cells. FCS-YB broth alone was used as a negative control.

Ammonia water (ammonium hydroxide; NH₃ 28% in water), ammonium chloride and ammonium sulphate were diluted in FCS-MEM and added to Sf1Ep cells to determine their cytotoxicity. The cytotoxicities of several combinations of broth filtrates of CPY4110 or CPY4111, jack bean urease, and urea were also evaluated.

Observation of cytopathic effects

For photomicrography, Sf1Ep cells treated under various conditions were washed twice with PBS, fixed with methanol and stained for 15 min by Giemsa.

Determination of ammonia

Ammonia concentrations in broth filtrates were determined by the method of Kitajima and co-workers.20

Assay of urease activity

Urease activity was quantified spectrophotometrically as described by Mobley and co-workers.21 Samples (5–50 μl) were added to cuvettes (1-cm path length) containing 3 ml of 3 mM sodium phosphate (pH 6.8), phenol red 7 μg/ml and 250 mM urea. Optical density at 560 nm was followed at 37°C, and reaction rates were calculated from linear portions of the curves (0.15–0.5 OD) with ammonia water as a standard. One unit of the enzyme activity was defined as 1 μmol of urea hydrolysed per min.

Table I. Cytotoxic activity in broth-culture filtrates of H. pylori for three epithelial cell lines

<table>
<thead>
<tr>
<th>Strain</th>
<th>Titre* of cytotoxic activity against</th>
<th>AGS</th>
<th>HEp-2</th>
<th>Sf1Ep</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCTC 11637</td>
<td></td>
<td>32</td>
<td>4</td>
<td>32</td>
</tr>
<tr>
<td>CPY0103</td>
<td></td>
<td>4</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>CPY0112</td>
<td></td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>CPY0163</td>
<td></td>
<td>16</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>CPY0521</td>
<td></td>
<td>8</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S2473</td>
<td></td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>V0031</td>
<td></td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>V0111</td>
<td></td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

* The highest dilution that caused degeneration, including intracellular vacuolation or cell detachment from culture plates, in more than 25% of the cells after incubation for 48 h.
Results

The cytotoxicity of nine strains of *H. pylori* for three mammalian cell lines was determined without addition of urea (table I). Broth filtrates of all the strains caused concentration-dependent degeneration of the cells with intracellular vacuolation, although the titre of cytotoxic activity varied between strains. AGS and Sf1Ep cells were more susceptible to damage than HEp-2 cells. FCS-YB broth alone did not produce such discernible CPEs on any of the cell lines after incubation for 48 h.

When the broth filtrate of CPY4110 was added to Sf1Ep cells, vacuolation appeared after 30 min and gradually increased (figure, B). The cells remained attached to the culture plates even after incubation for 48 h.

To determine the role of ammonia in producing the CPEs observed, various concentrations of ammonia were added to Sf1Ep cells. No CPEs were seen with ammonia concentrations of less than 7.35 mM, even after 48 h. When 14.7 mM ammonia was added, some cells became rounded within 10 min and subsequently became detached from the culture plates (figure, D). The typical vacuolation was not seen within the cells. Following the addition of 29.4 mM ammonia, almost
whereas that of mutant CPY4111 did not display such an increase in the activity. In contrast, when the broth filtrate of CPY4110 or of mutant CPY4111, Brucella Broth, and jack bean urease, in the presence or absence of urea, are summarised in table II. CPY4111 filtrate contained 0.098 unit of urease activity/ml, whereas CPY4111 filtrate had no activity. Ammonium chloride or ammonium sulphate alone, produced a similar degree (titre 8) of CPE on SfI Ep cells in the absence of urea. In the presence of urea (figure, G), but remained small even after incubation for 48 h (figure, H).

Titres of the cytotoxic activity of various combinations of the broth filtrate of wild-type strain CPY4110 or of mutant CPY4111, Brucella Broth, and jack bean urease, in the presence or absence of urea, are summarised in table II. Both of the broth filtrates produced a similar degree (titre 8) of CPE on SfI Ep cells in the presence of urea. In the presence of 30 mM urea, the broth filtrate of strain CPY4110 showed an increase in cytotoxic activity to a titre of 64, whereas that of mutant CPY4111 did not display such an increase in the activity. In contrast, when the broth filtrate of the urease-negative mutant CPY4111 was supplemented with jack bean urease, the titre was the same as that of the broth filtrate of strain CPY4110. These results suggest that two factors, ammonia produced from urea by H. pylori urease and cytotoxic substance released from the organism, contribute to CPEs.

Discussion

Leunk et al. reported that H. pylori produced a protein other than urease that is responsible for CPEs. Subsequently, it has been reported that ammonia produced from urea by the urease of H. pylori causes CPEs. To clarify the importance of the cytotoxic and ammonia in H. pylori cytotoxicity in vitro, we produced a urease-negative mutant (CPY4111) of a clinical isolate of H. pylori (CPY4110).

We have shown in this study that the broth filtrates of each of the nine strains of H. pylori tested caused intracellular vacuolation. We have also shown that ammonia as well as urea and jack bean urease could induce rounding and detachment of the cultured cells without vacuolation, whereas ammonium salts induced the production of small vacuoles. Thus the morphological changes in the cells induced by these agents are distinct from those induced by the broth filtrates of H. pylori.

The broth filtrate of strain CPY4110 induced vacuolation followed by rounding and detachment of SfI Ep cells in the presence of urea (figure, E). Although Leunk et al. did not measure urease activity in broth-culture filtrates of H. pylori, we demonstrated such activity in the broth filtrate of strain CPY4110. Therefore, the above findings indicate that urease hydrolysed urea to produce ammonia during incubation which then caused cell rounding and detachment. In fact, the broth filtrate of the urease-negative mutant supplemented with jack bean urease induced a similar type and extent of cytotoxicity. It should be noted that the concentration of ammonia at the time the micrograph in figure, E was taken was estimated to be 6-4 mM, which was well below the concentration needed to produce CPEs in the absence of culture filtrate. Thus the cultured cells, having been induced to vacuolation by the cytotoxic substances, were more susceptible to urease-induced damage than those without vacuolation.

During the preparation of this manuscript, Cover et al. have reported findings similar to ours. They have suggested that the vacuolating activity of H. pylori supernatant is not mediated solely by urease activity but that it may be potentiated by urease-mediated ammonia production. They used a neutral red uptake method as a quantitative assay of cell vacuolation. We have demonstrated that the CPE induced by the cytotoxic substance is one of intracellular vacuolation, whereas that induced by ammonia is of rounding and detachment. As Leunk et al. suggested, intracellular

Table II. CPEs produced by H. pylori culture filtrate on SfI Ep cells after incubation for 2 days

<table>
<thead>
<tr>
<th>Test sample</th>
<th>Titre* of cytotoxic activity in the presence of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no urea</td>
</tr>
<tr>
<td>Culture filtrate† of</td>
<td></td>
</tr>
<tr>
<td>CPY4110 alone</td>
<td>8</td>
</tr>
<tr>
<td>CPY4111 alone</td>
<td>8</td>
</tr>
<tr>
<td>CPY4111 and urease‡</td>
<td></td>
</tr>
<tr>
<td>Brucella broth alone</td>
<td>0</td>
</tr>
<tr>
<td>Brucella broth and urease</td>
<td>0</td>
</tr>
</tbody>
</table>

* See legend for table I; 0, no CPE.
† CPY4110 filtrate contained 0.098 unit of urease activity/ml, whereas CPY4111 filtrate had no activity.
‡ Jack bean urease, 0-1 unit/ml.
. . . , not determined.

all the cells showed such degeneration within 10 min. Concentrations of ammonia in the broth filtrate of CPY4110 and its urease-negative derivative, CPY4111, were 16.5 mM and 14.0 mM, respectively, whereas FCS-YB broth contained 3.5 mM ammonia. These results suggest that a large portion of ammonia in the broth filtrates is a urease-independent metabolic product of the bacteria.

The broth filtrate of strain CPY4110 contained urease activity of 0.098 unit/ml, whereas no activity was detected in the broth filtrate of strain CPY4111. Therefore, it was expected that the broth filtrate of CPY4110 might produce CPEs due to ammonia produced from urea by the action of urease. In fact, when the broth filtrate of CPY4110 containing 0.025 units of urease was added to SfI Ep cells in the presence of urea, intracellular vacuolation appeared within 30 min, and the cells were gradually rounded up and detached from the culture plates after incubation for 45 min (figure, E). By this time the concentration of ammonia was estimated to have increased from 4-1 mM to 6-4 mM by the action of urease. Addition of 0-1 unit of jack bean urease and 30 mM urea to FCS-MEM also caused CPEs on the cells with morphology similar to those by ammonia alone (figure, F).

Ammonium chloride or ammonium sulphate alone, at a concentration > 7.5 mM, produced a different type of cytotoxic effect. Very tiny vacuoles appeared in the cells within 30 min and increased in number (figure, G), but remained small even after incubation for 48 h (figure, H).

Titrates of the cytotoxic activity of various combinations of the broth filtrate of wild-type strain CPY4110 or of mutant CPY4111, Brucella Broth, and jack bean urease, in the presence or absence of urea, are summarised in table II. Both of the broth filtrates produced a similar degree (titre 8) of CPE on SfI Ep cells in the absence of urea. In the presence of 30 mM urea, the broth filtrate of strain CPY4110 showed an increase in cytotoxic activity to a titre of 64, whereas that of mutant CPY4111 did not display such an increase in the activity. In contrast, when the broth
vacuolation may be non-lethal, but further attack by ammonia may then lead to irreversible damage. Thus, both the cytotoxic substance and the urease of *H. pylori* contribute to lethal cytotoxicity *in vitro*. It is possible to speculate that such a mechanism operates *in vivo* also, during the development of peptic ulceration, since cytotoxin-producing strains of *H. pylori* are isolated more frequently from patients with peptic ulcer than from patients with chronic gastritis alone. However, it should be noted that the local concentration of urea is another important factor that contributes to the pathogenicity of *H. pylori.*

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan.

References

