Rat model of chronic lung infections caused by non-typable *Haemophilus influenzae*

I. MACIVER,* S. H. SILVERMAN,† M. R. W. BROWN and T. O'REILLY‡

Microbiology Research Group, Pharmaceutical Sciences Institute, Aston University, Aston Triangle, Birmingham B4 7ET, †Department of Surgery, Queen Elizabeth Hospital, Birmingham B15, and ‡Pharma Research, K 125.1.04, Ciba-Geigy Limited, Basel, Switzerland, CH-4002

Summary. Patients with chronic obstructive pulmonary disease (COPD) often have chronic or recurrent pulmonary infections with non-typable *Haemophilus influenzae*. A model of these infections exploited agar bead vehicles to protect the inoculum from rapid clearance, and a chronic lung infection of at least 42 days duration was established in rats. This infection induced increases in serum IgG titres to outer-membrane (OM) and lipo-oligosaccharide (LOS) antigens; immunoblotting demonstrated that this humoral response was directed partly against the outer-membrane proteins (OMPs). Lung lavage fluid also contained an increased titre of IgG antibodies to OM and LOS 42 days after infection. Antibodies produced during infection with one strain of *H. influenzae* cross-reacted with OMPs from another, non-typable *H. influenzae* strain. Despite their encasement in agar beads, pulmonary *H. influenzae* remained susceptible to amoxycillin. This model of chronic pulmonary infections due to non-typable *H. influenzae* appears to resemble the situation in COPD patients and may be useful for experimental therapeutic studies.

Introduction

Chronic pulmonary infections due to non-typable (NT) *Haemophilus influenzae* cause serious complications in patients suffering from chronic obstructive pulmonary disease (COPD) including bronchitis, bronchiectasis and cystic fibrosis (CF). Although not the cause of the primary disease, such chronic and often recurrent infections are thought to contribute to deterioration of lung function.1 Whereas NT *H. influenzae* strains have been shown to be associated with pulmonary infections of CF patients,2, 3 their involvement in exacerbations of other COPD is less clear.4 However, Murphy and Apicella5 have outlined several lines of evidence that, although sometimes ambiguous, suggest the participation of *H. influenzae* in exacerbations of COPD: (1) association of the presence of *H. influenzae* in sputum with sputum purulence and deterioration of clinical condition; (2) rises in antibody titre to *H. influenzae* following exacerbations; (3) clinical improvement following anti-haemophilus chemotherapy; and (4) characterisation of the related respiratory condition of acute febrile tracheobronchitis as an infectious disease involving NT *H. influenzae*.

Cole6 has proposed that, following the development of initial COPD symptoms, subsequent damage to the lungs by *H. influenzae* sepsis contributes to the overall clinical condition. Bacterial clearance by antibiotic therapy and subsequent recolonisation induces progressive lung deterioration. Marks7 suggested that *H. influenzae* can mediate lung damage due to release of endotoxin invoking inflammatory responses and damaging respiratory cilia as well as immunological damage due to hypersensitivity reactions; indeed, *H. influenzae* lipo-oligosaccharide (LOS) appears to be capable of causing ciliostasis, loss of cilia and epithelial damage.8, 9 Furthermore, histamine formation by *H. influenzae*10 has been implicated as a factor contributing to pathogenesis.11

Experimental models of chronic pneumonia have focused on *Pseudomonas aeruginosa* pneumonia induced with bacteria encased in agar beads to prevent rapid clearance of the inoculum.12 The aspects of pathogenesis that have been considered include histopathological changes,12, 13 the microcolonial nature of bacterial growth in vivo,14 the nature of the bacterial cell surface in vivo,15 the influence of bacterial toxins on pathogenesis,13, 16, 17 the apparently protective immunogenicity, and subsequent involvement in immune-complex formation, of alginate,18 and the nature of the humoral immune response in serum.13, 16, 17

Recently, however, the agar bead model has been applied to the study of *H. influenzae* pulmonary infections. The impaired clearance of the organism due to the agar bead vehicle was demonstrated19 and
animals with pulmonary epithelial mucosal damage induced by hexamethylphosphoramide, or depleted of complement by use of cobra venom factor, were more susceptible to colonisation by *H. influenzae*. The purpose of the present study was to extend previous work concerning *H. influenzae* in chronic lung infection models by examining the humoral immune response, in both serum and lung lavage fluids, of chronically infected rats. The potential of this model for the study of antimicrobial therapy was also examined.

Materials and methods

Bacteria

H. influenzae strains HM 1 and HM 3 were obtained from saline-washed sputum samples from patients with bronchiectasis and confirmed to be NT by failure to agglutinate with capsular-specific antisera. Bacteria from a late exponential phase culture were stored at −70°C in brain heart infusion (BHI) broth supplemented with glycerol 15% v/v.

Preparation of inocula for experimental infection

H. influenzae was grown in 200-ml volumes of BHI broth supplemented with haemin 2.5 μg/ml and NAD 10 μg/ml contained in 1-L erlenmeyer flasks fitted with foam rubber closures. Incubation was at 37°C, with shaking at 180 rpm and in an atmosphere not enriched for CO₂. Cultures were seeded with a 1% v/v inoculum from a 12-h starter culture which had been inoculated with a few colonies from a heated blood (chocolate) agar plate. Bacteria were harvested by centrifugation (17,000 g, 4°C, 10 min), resuspended in 10 ml of cold buffer (200 mM NaCl, 20 mM KCl, 20 mM Na₂HPO₄, 20 mM glucose, casamino acids 4% w/v, pH adjusted to 7.4 with KOH), and diluted to contain 10⁵ or 10¹¹ cfu/ml (estimated by turbidimetry). The suspension was warmed to 45°C, and then 5 ml was mixed with 5 ml of molten Noble Agar (Difco) 4% w/v in H₂O at 45°C. The agar-bacteria suspension (5 ml) was taken up into a 5-ml syringe fitted with a 23 g needle and the suspension was injected quickly into 45 ml of rapidly stirred ice-cold buffer (100 mM NaCl, 10 mM KCl, 10 mM Na₂HPO₄, 10 mM glucose, casamino acids 2% w/v, pH adjusted to 7.4 with KOH) with the needle submerged. This suspension, containing either c. 10⁵ or c. 10¹⁰ cfu/ml, was then placed into 1-ml syringes (fitted with 23 g needles) in 0-2-ml amounts, and stored on ice until used. A slurry of amorphous agar particles encasing the bacteria was produced by this method and the particles ranged from (24 ± 30) μm to (90 ± 120) μm in cross section, as determined by microscopy. When examined by microscopy, almost all of the bacteria appeared to be associated with the agar beads. When subjected to a parallel procedure without agar, to determine the total cfu/ml, no significant loss of bacterial viability occurred.

Infection procedure

The infection procedure was based on that described by Cash et al.. Female Sprague-Dawley rats (180–240 g; specific pathogen free; Harlan Olac Ltd, Bicester, Oxon) were sedated with 0.5 mg of Hypnorm (fentanyl citrate plus fluanisone; Janssen) given by subcutaneous (s.c.) injection, and then anaesthetised with an intramuscular injection of midazolam (Hypnovel, Roche) 0.5 mg and Hypnorm 1 mg; pentobarbitol was found to be an unsuitable anaesthetic due to severe respiratory depression. Just before surgical exposure of the trachea, rats were given naloxone hydrochloride (Narcan, DuPont) 0.02 mg s.c. to promote respiration. The trachea was exposed by a vertical incision in the neck and each rat was inoculated intratracheally, by direct needle puncture, with 0.2 ml of the agar bead suspension warmed to room temperature. The animal was held in an upright position for a few seconds, then placed ventral side down until breathing returned to normal. The wound was closed with two 12-mm Michele clips and the animal was allowed to recover from anaesthesia. Fewer than 2% of the animals died from immediate respiratory failure. Control animals were either not operated upon or received sterile agar beads.

Animals (four or five in each set) were killed at intervals by sedation and anaesthesia as described above. Blood was collected by puncture of the *vena cava*, and the lungs were subsequently excised. Serum was prepared and stored at −20°C. The surface of the lungs were rinsed with sterile saline (NaCl 0.9% w/v), weighed in sterile petri dishes and then homogenised in ice-cold saline, in a glass tissue homogeniser with a teflon plunger fitted to a power drill in a drill press. Samples of lung homogenate were serially diluted in BHI broth and spread on to chocolate or BHI agar plates which were then incubated for 24 h at 37°C in a candle jar or a CO₂ 5% incubator before viable counting. Heparinised blood (0.1 ml) was also cultured on chocolate agar plates.

Lung lavage fluid was collected *post mortem* by infusion of 2-0 ml of saline through a catheter secured in the trachea; c. 25–50% of this volume could be recovered. This lavage fluid was centrifuged briefly and the supernate was removed and stored at −20°C.

Determination of haematological parameters

Blood was placed into dry heparinised tubes and leucocyte count, erythrocyte count, and haemoglobin concentration were determined with a Sysmex Microcell Counter (model CC-170M).

Preparation of bacterial antigens

Outer membranes (OMs) were prepared from bacteria grown in BHI broth containing protopor-
phyrin IX 5 μg/ml and NAD 10 μg/ml. Cell-free extracts were prepared from stationary phase (18 h) bacteria harvested by centrifugation (20,000 g, 20 min, 4°C) and disrupted in a French pressure cell operating at 69 Kpa (1 × 10^6 lb/in^2). These were then incubated with N-lauryl sarcosine (sarkosyl) 2-5% w/v at room temperature for 30 min. After slow centrifugation (16,000 g, 10 min, 4°C) to remove large debris, the supernate was subjected to high speed centrifugation (180,000 g, 1 h, 4°C). The resulting pellet was resuspended in H_2O_2, collected by centrifugation (180,000 g, 1 h, 4°C) and finally resuspended in a small volume (c. 0.5 ml) of H_2O. The protein content of each OM preparation was determined by the method of Lowry et al.21

LOS was prepared from stationary phase *H. influenzae* strain HM 1, grown in BHI broth containing protoporphyrin IX, by the phenol-chloroform-ether extraction method of Galanos et al.22

ELISA

Outer membranes. Microtitration plates were coated with OM suspension (protein 10 μg/ml in 50 mM carbonate buffer, pH 9-6), 250 μl/well, for 18 h at 4°C. Plates were then washed with phosphate-buffered saline (PBS; 140 mM NaCl, 2.7 mM KCl, 1.5 mM KH_2PO_4, 8.1 mM Na_2HP0_4, pH 7-4) containing Tween 20 0.5% v/v (PBS-Tween), and non-specific binding sites were blocked for 1 h at room temperature with PBS-Tween containing bovine serum albumin 1% w/v. After washing with PBS-Tween, 200 μl of serum or lung lavage fluid was added to the first well of each row, and 100 μl of this was serially diluted in PBS-Tween in the remaining wells. After incubation at 2 h at room temperature, plates were washed with PBS-Tween. Horseradish peroxidase (HRP)-conjugated goat anti-rat IgG (Sigma) diluted 1 in 1000 in PBS-Tween was added, 200 μl to each well, and the plates were incubated at room temperature for 2 h. Absorption of the conjugate with OMS obtained from strain HM 1 to test wells. Corrected absorbance readings of >0.1 were considered to be positive. Results are expressed as the log_{10} of the highest dilution that gave a positive reaction.

Lipo-oligosaccharide. ELISA to detect antibodies to purified LOS was done as above except that Tween 20 was omitted from all reagents; 250 μl of LOS antigen 10 mg/ml was added to each well.

SDS-PAGE and immunoblotting

Outer membrane proteins (OMPs) were separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) in 1.5-mm thick gels containing acrylamide 10% as described by Niven et al.22 Samples containing 40 μg of protein were loaded on to each well and the separated polypeptides were either stained with Coomassie Blue, or used in immunoblotting. Polypeptides were transferred electrophoretically to nitrocellulose paper, and antigenic sites were visualised by the method of Towbin et al.24 with Tris-glycine-methanol as the transfer buffer. Tris-saline buffer (pH 7-4) containing Tween 20 0.3% v/v was used for blocking and for diluting antisera (1 in 25) and goat anti-rat IgG HRP conjugate (1 in 1000). Paper-bound immune complexes were visualised with 4-chloro-1-naphthol. The HRP conjugate required absorption with isolated OMPs from strain HM 1 to reduce non-specific binding to transferred OMPs. However, such treatment could not completely eliminate binding to the major 40-Kda OMP. Amido black staining of the nitrocellulose paper showed that the transfer of OMPs was qualitatively complete, but Coomassie Blue staining of gels after electrotransfer indicated that the transfer was quantitatively incomplete.

Therapy of infection

Two weeks after the injection of 10^6 cfu of *H. influenzae* strain HM 1, animals were given a single intramuscular dose of Augmentin (amoxycillin + clavulanic acid; Beecham) 30 mg/kg. Control animals received pyrogen-free water. Animals were killed at intervals and the lungs were homogenised and their bacterial content determined as described above.

The MIC of amoxycillin for the bacterial strain was determined by the tube dilution method with BHI broth and an inoculum sufficient to give 10^5 cfu/ml final concentration. The MBC was determined by subculture (10 μl of each dilution) to chocolate agar plates where the absence of growth was considered indicative of a bactericidal amoxycillin concentration.

Statistical analyses

The statistical significance of differences between groups was determined with the two-tailed t test.

Results

After the intratracheal administration of *H. influenzae* strain HM 1 in agar-beads, rat lungs became chronically colonised and this condition persisted for at least 42 days (fig. 1A). In the examples presented here, inocula of 10^6-7 (low inocula) or 10^8-1 (high inocula) cfu were used. Despite the use of
different inocula, the animals appeared to contain the same initial numbers of cfu/g of lung (fig. 1A). However, although similar numbers of beads were produced and injected into the animals, those of the low inocula were estimated to contain three bacteria/bead, whereas those of the high inocula contained 44 bacteria/bead. As the lung homogenisation procedure was unlikely to disrupt the agar beads, the animals thus appeared to contain the same number of cfu/g of lung despite the differences in the initial pulmonary bacterial load. Contamination of the lungs by non-haemophilus bacteria occurred, but was <1% of the *H. influenzae* population at day 0 and, although this contamination increased during the course of the infection, it was <32% by day 42. In some animals given 10^6-5 cfu, the infection persisted for 70 days with a mean count of 10^3-8 cfu/g of lung, although contaminants were in equal numbers by this time.

The presence of pulmonary *H. influenzae* did not appear to affect the rate of weight gain as compared to unmanipulated controls. Furthermore, haematological parameters (leucocyte and erythrocyte counts, haemoglobin content) did not demonstrate any apparent effect of pulmonary infection; infected animals showed age-dependent increases similar to control (unmanipulated) animals and all values were within normal ranges. Blood from infected or control animals contained <10 cfu of bacteria/ml at any sampling time.

This persistent infection was accompanied by increasing titres of serum antibodies directed against OMs derived from strain HM 1 (fig. 1B). Animals given sterile agar beads had titres not significantly different from unmanipulated controls and the two groups were then combined for statistical comparisons with infected animals. Although in both of these groups there was a slight increase in titre with increasing age, the titres at day 42 were not significantly different from those at day 0 (p > 0.1; fig. 1B). From initial titres, indicative of naturally occurring antibodies, there was a rapid rise in antibodies against OMs in infected animals. At 14 days after infection, these increases were statistically significant (fig. 1B; low inoculum p < 0.001; high inoculum p < 0.02 compared to day 14 controls). This trend continued and animals that had received a larger inoculum of *H. influenzae* had a higher titre by day 42 than those that had received lower inocula (fig. 1B; low or high inocule p < 0.001 compared to day 42 controls).

Serum antibodies directed against LOS derived from strain HM 1 also increased, from a titre indicative of naturally occurring antibodies, to become significantly different (low or high inoculum p < 0.002) from controls at 42 days after infection (fig. 1C). Unmanipulated control animals and rats given sterile agar beads had titres not significantly different from each other, although, in contrast to the results with OMs as antigen, the titres increased with increasing age, becoming significantly different from initial titres by day 42 (p < 0.02; fig. 1C).

Specific antibodies were also detected in lung lavage fluid of infected rats. In unmanipulated, age-matched, control animals only very low levels of antibodies against OM and LOS antigens were found in contrast to

![Fig. 1. Pulmonary persistence and serum antibody response to NT H. influenzae. A, pulmonary *H. influenzae* HM 1 population after injection of 10^6-7 (□) or 10^6-1 (■) cfu. B, serum antibody titre directed against OM components of strain HM 1 of unmanipulated control animals (△) or animals given sterile agar beads (●), or 10^6-7 (○) or 10^6-1 (■) cfu. C, serum antibody titre directed against LOS purified from strain HM 1 (symbols as in panel B). Values presented are means (n = 4 or 5) and the SEM is either encompassed by the size of the symbol or represented by vertical bars. Titres from infected animals were compared to age-matched controls and in panel C, day 42 controls are compared to day 0 controls; *p < 0.02, **p < 0.002, ***p < 0.001.](image-url)
to infected animals at 42 days after infection (p<0.05; table).

The humoral immune response included antibodies directed against OMPs of strain HM 1 (fig. 2A). Fig. 2B shows a series of immunoblots with sequentially obtained sera and indicates an increasing intensity of antibody binding to several OMPs during the course of infection, with antibodies binding to the 30-, 32-, 40-, 80- and 82-Kda OMPs. A band at 23 Kda was also antigenic, which may represent, in part, the anti-LOS response. Some OMPs, barely visible on the stained gels, appear to be strongly antigenic (e.g. the 86-Kda polypeptide). Antibodies to OMPs were also detected in sequentially obtained lung lavage fluid (fig. 2C), notably demonstrating reactivity with the 40-Kda OMP.

The OMP profile of *H. influenzae* HM 3 is shown in fig. 3A. Sera obtained from rats infected with strain HM 1 reacted with several OMPs from strain HM 3 (fig. 3B). Pre-infection sera appeared to recognise OMPs at 63 and 86 Kda from strain HM 3, but such antibodies were apparently lost during infection with strain HM 1. Lung lavage fluid from rats infected with strain HM 1 contained antibodies that recognised the 40- and 44-Kda OMPs of strain HM 3 (fig. 3B). Animals infected with strain HM 3 (10^8 cfu/rat) produced antibodies binding to the 30-, 32- and 40-Kda OMPs of strain HM 1 (fig. 3D); some reactivity was also seen with the 80-, 82- and, perhaps, the 86-Kda OMPs.

The MIC of strain HM 1 for amoxycillin was 0.25–0.5 mg/L and the MBC was 0.5–1.0 mg/L. Despite encasement in agar beads, *H. influenzae* remained susceptible to amoxycillin in vivo (fig. 4). A single dose of Augmentin (30 mg/kg) resulted in at least a 98% reduction (p<0.005) in pulmonary *H. influenzae* in rats which had been given 10^6 cfu intratracheally 2 weeks previously. Since a sub-therapeutic dose was used, *H. influenzae* was not eradicated, and the bacterial population subsequently increased to pretreatment levels (fig. 4).

Table. *H. influenzae* antigen-specific antibody content of lung lavage fluid obtained 42 days after infection

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Mean log<sub>2</sub> antibody titre (SEM) in</th>
<th>controls<sup>+</sup></th>
<th>infected rats</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMs</td>
<td></td>
<td>1.47 (0.9)</td>
<td>8.82 (1.4)</td>
<td><0.05</td>
</tr>
<tr>
<td>LOS</td>
<td></td>
<td>2.86 (0.9)</td>
<td>7.82 (0.9)</td>
<td><0.05</td>
</tr>
</tbody>
</table>

* Age-matched animals; n=4 for both infected and control groups.

Fig. 2. Serum antibody response to *H. influenzae* strain HM 1 OMPs as determined by immunoblotting. OMPs were separated by SDS-PAGE and stained with Coomassie Blue (A) or transferred to nitrocellulose paper (B). Antibodies in pooled sera (n=4 or 5) forming paper-bound immune complexes were detected with anti-rat IgG peroxidase conjugate; C, a similar immunoblot but with pooled lung lavage fluid (n=4 or 5). Numbers below the lanes represent the days after infection when serum or lung lavage fluid was obtained; lane C is a control with conjugate but not primary antiserum.
Fig. 3. Cross reactivity of antibody responses to persistent pulmonary infection with *H. influenzae*. **A**, OMP profile of *H. influenzae* strain HM 3 after SDS-PAGE and staining with Coomassie Blue. **B**, immunoblots obtained with separated OMPs as antigens and probing with pooled sera (n=4 or 5) from rats infected with strain HM 1. Numbers below the lanes represent the days after infection when serum was obtained; lane L is with pooled (n=5) lung lavage fluid obtained 42 days after infection and lane C is a control reaction with conjugate but not primary antiserum. **C**, OMP profile of strain HM 1. **D**, reactivity of pooled sera (n=5), obtained from rats infected with strain HM 3, against OMP antigens from strain HM 1. Lane 0, sera obtained at the time of infection; lane 14, sera obtained 14 days after infection; lane C, is a control reaction as above.

Discussion

Incorporation of bacteria into agar beads has been useful in the establishment of experimental chronic pulmonary infections involving *P. aeruginosa*, *Bordetella pertussis* and *H. influenzae*. Incorporation of bacteria into agar beads has been useful in the establishment of experimental chronic pulmonary infections involving *P. aeruginosa*, *Bordetella pertussis* and *H. influenzae*. In the present study, this technique was used to demonstrate the persistent colonisation of rat lungs by a single clinical isolate of noncapsulate *H. influenzae*. Although we have found that two other strains were able to colonise the lungs for at least 2 weeks (data not presented), variation in virulence amongst isolates is likely and could be examined with this model. The infection model is not characterised by the presence of pulmonary *H. influenzae* in pure culture and thus, it is, similar to the clinical situation, in which *H. influenzae* is in the majority amongst many organisms isolated from sputum.

Previous agar bead models with *P. aeruginosa* have demonstrated that there are differences between bacterial strains with respect to pulmonary persistence. Strains producing exotoxin A and elastase appear to have increased persistence, which correlates with increased pulmonary pathology.

![Graph](image-url)
Exotoxin S does not appear to be critical for colonisation but its presence is associated with increased pulmonary damage.15 Although \textit{H. influenzae} does not appear to produce exotoxins, liberated LOS may be the primary pathogenic entity, and further experiments could compare various strains possessing different LOS moieties.27, 28 Although LOS of \textit{H. influenzae} is considered to be less toxic than the LPS of \textit{Escherichia coli},29 the binding of LOS to lung surfactant may increase its toxicity.30

Encasement of \textit{H. influenzae} into agar beads appears to facilitate resistance to normal cellular lung defence mechanisms as well as allowing infection. This occurs despite the presence of naturally occurring antibodies, which appear to be largely anti-LOS antibodies, in both serum and lung lavage fluid. Mice also appear to have low levels of naturally occurring anti-haemophilus antibodies in serum and lung lavage fluid.31 The situation is similar to that in COPD patients who probably acquire anti-haemophilus antibodies early in life32 but still succumb to pulmonary infections. Furthermore, in this rat model, the serum and lung lavage titres increased 7–10-fold during the course of the infection, depending on the bacterial inoculum. In this way, such infected rats are similar to CF,33 chronic bronchitis5 and bronchiectasis34 patients who almost uniformly have increased anti-haemophilus serum titres compared to normal subjects. Patients with \textit{H. influenzae} respiratory tract infections also have antibodies that react with OMPs of at least one other NT \textit{H. influenzae} strain.38 Extensive cross-reactivity of antibodies present in serum and lung lavage fluid appears to contain only low amounts of complement components.42, 43 (3) Poor opsonic activity of antibodies induced by intratracheal antigen presentation,43 which is in contrast to the protection afforded by active immunisation via non-respiratory tract antigen presentation routes, or by passive immunisation via the systemic circulation;44 (4) induction of blocking IgA antibodies;45 (5) possible phenotypic shift to increased resistance to anti-LOS antibodies, as occurs in \textit{H. influenzae} type b.45

Antibodies directed against NT \textit{H. influenzae} OMPs and LOS have been detected in the serum of mice vaccinated intraperitoneally.31, 41 However, antibodies reactive with \textit{H. influenzae} OMPs appeared only in the lung lavage fluid following intratracheal challenge of intraperitoneally immunised mice.41 Such antibodies were found to be opsonic and not bactericidal, and correlated with increased clearance of the challenge inoculum.41 In the present study, despite the increase in lung lavage fluid (and serum) antibodies, there was no apparent decrease in net pulmonary bacterial load. Resistance to these antibodies may be in part due to: (1) inaccessibility of antigens afforded by the agar beads; (2) low complement activity, as lung lavage fluid appears to contain only low amounts of complement components;42, 43 (3) poor opsonic activity of antibodies induced by intratracheal antigen presentation,43 which is in contrast to the protection afforded by active immunisation via non-respiratory tract antigen presentation routes, or by passive immunisation via the systemic circulation;44 (4) induction of blocking IgA antibodies;45 (5) possible phenotypic shift to increased resistance to anti-LOS antibodies, as occurs in \textit{H. influenzae} type b.45

Although not studied as comprehensively, similar cross reactivity occurs with IgG antibodies in the serum and lung lavage fluid of chronically infected rats (fig. 4). The extent of common epitopes within OMPs of NT \textit{H. influenzae} strains has been examined previously,5 suggesting that extensive cross-reactivity can occur, particularly with the OMPs of c. 40 Kda. This model may be useful for the examination of the protective effect of cross-reactive antibodies induced by immunisation with a single isolate of NT \textit{H. influenzae}, as has been reported in chronic bronchitis patients.46, 47

This experimental model is amenable to antibiotic therapy, indicating retention of susceptibility by the bacteria and sufficient penetration of amoxycillin into the agar bead to attain bactericidal concentrations. Amoxycillin would appear to be an effective antibiotic capable of eradicating pulmonary \textit{H. influenzae} in this
experimental model, as it is in patients with bronchiectasis, and chronic bronchitis. Despite an initial decrease after antibiotic treatment, pulmonary H. influenzae increased in numbers in the rat lung (fig. 4), presumably due to insufficient antimicrobial treatment; however, use of this protocol may mimic the recolonisation of patients' sputum that can occur soon after cessation of antibiotic therapy.

This work was supported by grants from the Medical Research Council and the Cystic Fibrosis Research Trust awarded to M.R.W.B., S.H.S. and T.O.R. T.O.R. thanks the Medical Research Council of Canada for a postdoctoral fellowship. We thank E. Grant for excellent technical help, and G. Morris, M. Ruglys, D. Cochrane and O. Zak for helpful comments. Part of this work was done at Ciba-Geigy Ltd, Basel, and we thank S. Kunz, J. Vaxalaira and B. Hengstler for their assistance.

References

20. Slater LN, Van Meter D, Emmons S. Effects of modification of host defences upon the duration of infection in a rat model of persistent pneumonia due to nontypeable (unencapsulated) Haemophilus influenzae. 87th Annual Meeting of the American Society for Microbiology 1987; Abstract B-87.