ICTV Virus Taxonomy Profile: Avsunviroidae

Francesco Di Serio,1,* Shi-Fang Li,2 Jaroslav Matoušek,3 Robert A. Owens,4 Vicente Pallás,5 John W. Randles,6 Teruo Sano,7 Jacobus Th. J. Verhoeven,8 Georgios Vidalakis,9 Ricardo Flores5 and ICTV Report Consortium

Abstract

Members of the family Avsunviroidae have a single-stranded circular RNA genome that adopts a rod-like or branched conformation and can form, in the strands of either polarity, hammerhead ribozymes involved in their replication in plastids through a symmetrical RNA–RNA rolling-circle mechanism. These viroids lack the central conserved region typical of members of the family Pospiviroidae. The family Avsunviroidae includes three genera, Avsunviroid, Pelamoviroid and Elaviroid, with a total of four species. This is a summary of the ICTV Report on the taxonomy of the family Avsunviroidae, which is available at http://www.ictv.global/report/avisunviroidae.

Table 1. Characteristics of the family Avsunviroidae

Typical member: avocado sunblotch viroid (J02020), species Avocado sunblotch viroid, genus Avsunviroid	Genome	Single-stranded circular RNA of 246–401 nt that can form hammerhead ribozymes in the strands of either polarity
Host range	Plants (dicots)	
Replication	A nuclear-encoded plastid RNA polymerase generates complementary oligomeric RNAs that are co-transcriptionally self-cleaved by the hammerhead ribozymes. The resulting monomeric RNAs are circularized by a tRNA ligase	
Taxonomy	Three genera, collectively containing four species	

GENOME

Members of the family Avsunviroidae have a circular single-stranded RNA genome of 246 to 401 nt, which may assume rod-like, quasi-rod-like or branched conformations in silico or in vitro, with indirect or direct evidence supporting similar conformations in vivo (Table 1, Fig. 1). Viroid G+C content is >50% except for avocado sunblotch viroid (38%). RNAs of (+, arbitrarily the most abundant strand in vivo) and (−) polarity can form active hammerhead ribozymes (Fig. 2) that are involved in replication [1, 2].

REPLICATION

Replication takes place in plastids, mostly chloroplasts, through a symmetrical rolling-circle mechanism. A nuclear-encoded plastid RNA polymerase, conscripted to transcribe RNA templates instead of its physiological DNA template, synthesizes oligomeric viroid RNAs of both polarities. These oligomers are self-cleaved co-transcriptionally by the embedded hammerhead ribozymes, thereby generating linear monomeric RNAs that are subsequently circularized by a tRNA ligase. This enzyme, like the nuclear-encoded plastid RNA polymerase, is encoded in the nucleus and translocated into plastids.

TAXONOMY

The type of hammerhead structure, the genome G+C content and its solubility in 2 M LiCl, together with clustering in phylogenetic trees derived from whole genome sequences, are used as genus demarcation criteria.
Avsunviroid

Members of the single species in the genus, *Avocado sunblotch viroid*, have a genome that adopts a rod-like conformation, has G+C content of 38%, and is soluble in 2 M LiCl (Fig. 1). Hammerhead structures formed by either strand are thermodynamically unstable with a short helix III (Fig. 2); thus double-hammerhead structures may be involved in self-cleavage. Avocado is the only known natural host [3].

Pelamoviroid

Members of the two species included in this genus (*Peach latent mosaic viroid* and *Chrysanthemum chlorotic mottle viroid*) have circular RNA genomes that are insoluble in 2 M LiCl and assume branched conformations stabilized by a kissing-loop interaction in the (+) strand (Fig. 1). Stable single-hammerhead structures (Fig. 2) mediate replication [4, 5]. Host range is restricted to the original hosts and some closely related species.

Elaviroid

Members of the single species in this genus, *Eggplant latent viroid*, have a genome that assumes a quasi rod-like conformation (Fig. 1) and is soluble in 2 M LiCl. Both strands form stable single-hammerhead structures involved in replication. Host range is restricted to several eggplant cultivars [6].

RESOURCES

Funding information

Production of this summary, the online chapter and associated resources was funded by a grant from the Wellcome Trust (WT108418AIA).

Acknowledgements

We thank Beatriz Navarro for help with the phylogenetic analyses and preparation of the corresponding figures and files. Members of the ICTV Report Consortium are Elliot Lefkowitz, Andrew Davison, Stuart Siddell, Peter Simmonds, Sead Sabanadzovic, Donald B. Smith, Richard Orton and F. Murilo Zerbini.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References