Determinants of host species range in plant viruses
Benoît Moury, 1,* Frédéric Fabre, 2 Eugénie Hébrard 3 and Rémy Froissart 4,5

Abstract
Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant–virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.

INTRODUCTION
Pathogen emergence is the process by which the causative agent of a disease increases in incidence following its appearance in a new or in a previously existing host population [1, 2]. In the case of animal and human diseases, particular attention has been paid to pathogen ‘host jumps’, where a pathogen infecting a reservoir host generates epidemics and disease in a new species. Host jumps involve three major steps: (i) encounter of the new host, (ii) infection and (iii) propagation in that host population [3]. Most studies of pathogen emergence have focused on the ecological and anthropic factors involved, such as increase in human population, modification of land use, introduction of pathogens in new areas through global travel or trade, or expansion of the geographical range of vectors. These factors mostly influence steps (i) and (iii) above, and their effects are difficult to anticipate because they are influenced by multiple environmental variables and human activities. In contrast, step (ii) of host jumps, i.e. infection of the new host, is determined to a large extent by intrinsic host and pathogen properties. As a consequence, identifying which pathogen properties determine host infection would help to compare risks of emergence among different pathogens.

Infectivity of a pathogen in a given species can be difficult to evaluate, especially for animal or human pathogens, for which controlled inoculation by a new pathogen may not be technically or ethically feasible. In contrast, determination of the species host range of plant parasites has been used for decades as a taxonomic criterion and extensive data on the ‘potential’ host species range of plant parasites (as opposed to their ‘realized’ host range) have been obtained by controlled inoculation experiments, especially for viruses [4]. However, evolution of plant virus host range is poorly understood (but see [5–9]). Notwithstanding this, host species jumps are certainly not infrequent among plant viruses, given the extreme contrasts of their host range breadth (HRB), from a single species to more than 1000, and the incongruence between the phylogeny of most plant viruses and that of their host species (but see [10, 11]). HRB was
found to be a major determinant of bacterial or viral emergence in humans [12]. Also, host range expansion is an important cause of emergence for plant pathogens and especially plant viruses [13, 14]. To improve our knowledge of the processes of plant virus emergence, we analysed an extensive virus host range database (VIDE database; [15]) to answer the following questions:

- Do certain types of viruses possess the capacity to infect a broader range of plant species than others?
- Are viruses likely to jump to plant species belonging to distant taxa?
- What are the general patterns of plant–virus interactions at the species rank?

RESULTS

Relationships between virus properties and HRB

To identify determinants of plant virus HRB, we analysed its relationships with putative explanatory variables corresponding to virus genome or transmission properties. For each virus species in the database, two HRB estimates were obtained: absolute HRB (absHRB), the total number of plant species listed as hosts in the database, and relative HRB (relHRB), corresponding to absHRB divided by the total number of assayed plant species, whether hosts or non-hosts. In addition, different datasets were analysed because of potential precision or accuracy issues associated with differences in (i) the total number of assayed plant species and/or (ii) their distribution within plant taxonomy between virus species (i.e. the fact that the assayed plant species are not equally evenly distributed across plant genera or families for all viruses). To tackle the first issue, we analysed a restricted dataset comprising the 293 virus species for which \(\geq 15 \) plant species were assayed in addition to the entire dataset comprising 480 virus species. Indeed, the 293-virus dataset provides a better precision of HRB estimates (Method S1, available in the online Supplementary Material). To tackle the second issue, we analysed additional restricted datasets for which a minimal diversity of plant genera or families, as assessed by Hill numbers of order 2 \((\text{Hill}_{\text{gen}}\) and \(\text{Hill}_{\text{fam}}\), respectively) [16], has been assayed (Table S1 and Methods section).

We analysed the correlations between the explanatory variables using multiple correspondence analyses (MCAs) (Fig. S1). The two main axes of the MCAs accounted for 23.0 and 22.3 % of the total variation for the entire (480 species) and restricted (293 species) datasets, respectively, and revealed only limited redundancy between the explanatory variables. The following two axes (orders 3 and 4) explained 16 and 17 % of the total variation for these two datasets, respectively. Moreover, absHRB and relHRB used as illustrative variables were poorly linked to the two main axes, suggesting that they are not redundant with the explanatory variables.

The absHRB of viruses was highly significantly linked to four different viral properties, namely their genome nature, their number of genome segments, their mode of vertical transmission and their vector type (variables GEN, SEG, VER and VEC, respectively), and, to a lower extent, to their abiolic horizontal transmission mode (Table 1). Viruses with a single-stranded (ss) genome (either composed of RNA or DNA) had a broader host range (16.7 and 12.6 plant species on average, respectively) than viruses with a double-stranded (ds) genome (3.6 and 3.9 species on average for dsRNA and dsDNA viruses, respectively). In contrast, there was no significant difference in the absHRB of positive- and negative-sense (or ambisense) RNA viruses \((P=0.097; \text{Kruskal–Wallis test})\). Viruses with three genome segments had a significantly broader host range (28.3 species on average) than other groups (10.5–15.7 species on average). Concerning vertical transmission, seed-transmitted viruses had a broader host range (20.2 species on average) than viruses with no seed transmission (12.8 species on average). Both viruses transmitted through contamination of the seed coat and of the seed embryo had larger host ranges than viruses with no seed transmission and no significant difference was observed between these two groups of seed transmitted viruses (data not shown). Concerning biotic horizontal transmission, nematode-borne viruses had a broader host range (33.5 species on average) than other types of viruses, whereas small absHRB differences were observed among viruses corresponding to other vector types or with no known vector (from 10.9 to 15.1 species on average). Thrips-transmitted viruses had broad host ranges (38.3 species on average) but did not depart significantly from other virus groups, perhaps because of their underrepresentation in the dataset (six virus species only). In addition, viruses transmitted both vertically through seeds and horizontally through biological vectors had a larger host range than viruses transmitted exclusively through seeds, exclusively through vectors, or neither through seeds nor through vectors (data not shown; [17]). Concerning abiotic horizontal transmission, viruses transmitted by contact between plants had a slightly broader host range than viruses with no horizontal abiotic transmission (16.5 versus 14.4 species, respectively).

The robustness of the links between these virus traits and HRB was examined with restricted virus sets limiting potential precision or accuracy issues (Method S1, Table S1). For all these restricted datasets (13/13), the links between the two HRB estimates (absHRB and relHRB) and the explanatory variables SEG, VER and VEC were similar to those observed for the entire dataset, meaning that viruses with three genome segments had a larger HRB than viruses with a single genome segment, seed-transmitted viruses had a larger HRB than viruses with no vertical transmission and nematode-borne viruses had a larger HRB than arthropod-borne viruses (Table S1). Two other explanatory variables, genome type and kind of vector transmission, showed less robust effects. Only 3/13 of these datasets revealed significant differences among virus groups differing by their genome nature, viruses with an ssRNA genome having a significantly larger HRB than at least one of the virus groups.
with a ds genome. In six additional datasets, an overall effect of virus genome nature on HRB was detected with the Kruskal–Wallis multiple test but no differences between virus groups were detected. However, the trend was similar and viruses with an ssRNA genome had a larger HRB than viruses with a ds genome. This lack of robustness was probably due to the underrepresentation of viruses with dsRNA or dsDNA genomes in many of these datasets (four viruses or fewer in these two groups) and consequently a lack of statistical power, i.e. a poor capacity to detect true differences between virus groups. For the kind of vector transmission, only datasets comprising viruses for which ≥15 plant species were assayed revealed significant differences in HRB, with non-vectored viruses having a significantly larger HRB than viruses transmitted by vectors in a non-circulative manner.

We computed conditional inference regression trees to synthesize the effect of the four main significant explanatory variables (GEN, SEG, VER and VEC) on HRB. Regression trees take into account the interactions between explanatory variables and indicate which combinations of variables and variable levels correspond to higher or lower HRB. With the 480-virus dataset, the first dichotomy in the regression tree for absHRB was linked to the VEC variable and separated nematode-borne viruses from others (Fig. 1a). The second and third dichotomies were linked to the SEG and GEN variables, respectively. More distal nodes in the tree were linked to the VER variable and, again, to the SEG variable. With

<table>
<thead>
<tr>
<th>Virus trait [variable]</th>
<th>Significance†</th>
<th>Virus group</th>
<th>absHRB‡</th>
<th>n§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome type [GEN]</td>
<td><10⁻⁷***</td>
<td>ssRNA</td>
<td>16.7 a</td>
<td>384</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ssDNA</td>
<td>12.6 a</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsDNA</td>
<td>3.9 b</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dsRNA</td>
<td>3.6 b</td>
<td>31</td>
</tr>
<tr>
<td>Genome segments [SEG]</td>
<td>9.3×10⁻⁵***</td>
<td>3 segments</td>
<td>28.3 a</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 segments</td>
<td>15.7 b</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 segment</td>
<td>13.5 b</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>3 segments</td>
<td>10.5 b</td>
<td>20</td>
</tr>
<tr>
<td>Vertical transmission [VER]</td>
<td>8.0×10⁻⁷***</td>
<td>Seed transmission</td>
<td>20.2 a</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>12.8 b</td>
<td>340</td>
</tr>
<tr>
<td>Abiotic horizontal transmission</td>
<td>0.005**</td>
<td>Substrate</td>
<td>22.0 ab</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact between plants</td>
<td>16.5 a</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Graft</td>
<td>16.3 ab</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>None</td>
<td>14.4 b</td>
<td>319</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tools</td>
<td>10.1 ab</td>
<td>14</td>
</tr>
<tr>
<td>Vector type</td>
<td>1.2×10⁻⁴***</td>
<td>Thrips</td>
<td>38.3 ab</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nematode</td>
<td>33.5 a</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coleoptera</td>
<td>15.1 ab</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aphid</td>
<td>14.8 b</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No vector</td>
<td>14.4 b</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fungus</td>
<td>11.3 b</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other Hemiptera</td>
<td>11.1 b</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Whitefly</td>
<td>10.9 b</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mite</td>
<td>7.7 b</td>
<td>6</td>
</tr>
<tr>
<td>Vector type (arthropods grouped) [VEC]</td>
<td>1.3×10⁻⁴***</td>
<td>Nematode</td>
<td>33.5 a</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No vector</td>
<td>14.4 b</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropod</td>
<td>14.0 b</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fungus</td>
<td>11.3 b</td>
<td>24</td>
</tr>
<tr>
<td>Kind of vector transmission</td>
<td>0.87ns</td>
<td>Circulative and non-multiplying</td>
<td>16.4 a</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No vector transmission</td>
<td>14.7 a</td>
<td>165</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-circulative</td>
<td>14.7 a</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Circulative and multiplying</td>
<td>14.6 a</td>
<td>28</td>
</tr>
</tbody>
</table>

†P-values of Kruskal–Wallis significance tests: "ns" non-significant, "**P<0.01, "***P<0.001.
‡Mean values of absolute host range breadth (absHRB) for each virus group based on a dataset of 480 virus species. Virus groups sharing letters are not significantly different according to Kruskal–Wallis multiple comparisons (P>0.05).
§Number of virus species in the group.
Fig. 1. Conditional inference regression trees modelling the HRB of plant viruses with four explanatory variables representing major virus biological properties. (a) Absolute host range breadth (absHRB) using a dataset of 480 virus species. (b) Relative host range breadth (relHRB) using a dataset of 293 virus species. Explanatory variables were the genome nature of viruses (variable ‘GEN’, four categories: ssRNA, ssDNA, dsRNA, dsDNA; see Methods section), their number of genome segments (variable ‘SEG’, four categories: one, two, three, >3), the mode of vertical transmission (variable ‘VER’, two categories: seed, no) and the vector type (variable ‘VEC’, four categories: arthropods, fungus, nematode, no-arthropods were grouped). Trees should be interpreted by starting at the top, following each branch down from each node, to arrive at a terminal node. For each terminal node, box plots of HRBs are represented and the average HRBs are indicated. n, number of virus species in the group.
the 293-virus dataset, a similar and simpler regression tree was obtained for relHRB (Fig. 1b) or absHRB (data not shown). The nodes of the tree were linked to the VEC and SEG variables. Overall, the regression trees strengthen the importance of the nature of virus vectors and of genome segmentation to explain virus HRB and emphasize which combinations of these biological properties correspond to a higher or lower HRB.

Differences in HRB were also compared between the most represented virus genera (Table S2). Nepovirus was the only genus revealing a significantly broader host range than other genera (Begomovirus, Carlavirus, Potyvirus and Tymovirus). Nepoviruses are nematode-borne and seed-transmitted, two traits that were linked to large host ranges in the previous analyses (Tables 1 and S1). In the 480-virus dataset, the only additional effect detected was the smaller HRB of alphacryptoviruses (1.2 host species on average), a group of seed-transmitted dsRNA viruses, compared to most other virus genera (data not shown).

A model was built to predict the absHRB class of a virus (class 1: ≤ 5 host species; class 2: 6–15 host species; class 3: >15 host species) from the four variables GEN, SEG, VER and VEC (Method S2). The overall rate of correct assignments to absHRB classes by the model was 0.48 compared to a rate of 0.33 obtained with a random classifier choosing the absHRB class randomly. A detailed analysis of the predictive performance of the model is provided in Method S2. Additional models aiming to predict the diversity of host genera or families are also presented in Method S2.

Plant determinants of virus host range

We examined at which plant taxonomic rank the barriers to infection by viruses are more widespread and/or stronger. Four different Hill numbers [16] of order $q = 0$ to $q = 3$, integrating plant richness and abundance, were calculated for the hosts of each virus species and at different plant taxonomic ranks (Fig. 2). Depending on q, the Hill numbers place more weight on host richness or distribution evenness. However, whatever q, the ranking of the Hill numbers and the significant differences between taxonomic levels were remarkably similar. A sharp decrease in host diversity was observed between the genus and the family levels. Then, no significant difference in diversity was observed between the family and the order levels and a small but significant host diversity reduction was observed at higher taxonomic ranks.

These results indicate moderate barriers to infection at the within-family rank, each virus species being generally infectious in several plant genera, and much more frequent and/or stronger barriers to infection at the between-family rank. By comparison, only a few additional barriers to infection occur at higher plant taxonomic ranks. Consequently, the plant family appears to be a key taxonomic threshold for plant virus host range.

Fig. 2. Comparison of the diversity of plant taxa among plant virus hosts. Shown are mean Hill numbers of orders $q = 0$ to $q = 3$ corresponding to the diversity of host species averaged for all virus species at different plant taxonomic ranks. For each q order, mean Hill numbers were compared between plant taxonomic levels by a Kruskal–Wallis multiple test. Plant taxonomic levels sharing letters are not significantly different for a given q order. Taxonomic rank X was based on plant phylogeny and contains Eurosids I and II, Euasterids I and II, Commelinales, Asparagales, Liliales, Caryophyllales, Alismatales, Ranunculales, Proteales, Buxales, Cycadales, Dioscoreales, Polypodi-ales, Saxifragales, Vitales, Pinales, Charales, Corinales, Ericales, Ger-aniales and Myrtales [46].

Structure of the plant–virus infectivity matrix

From the entire virus species – plant species infectivity matrix obtained from the database, a smaller matrix (37 viruses × 28 plants) containing relatively few (<10%) missing host/non-host data was extracted and analysed for nested or modular structural patterns, two important properties that correspond to two contrasted models of host range evolution [18]. This matrix was shown to be highly significantly nested ($P < 0.001$) (Fig. 3a), whatever the algorithm used, the method used to simulate the status of the missing data and the null model used for significance assessment (Table 2).

Concerning modularity analyses, the edge.betweenness algorithm failed to detect any module in the matrix. For the other two algorithms (spinglass.community and leading.eigenvector.community), modularity was significant in most simulation cases ($0.006 < P < 0.078$; Table 2). In only one of eight cases was the significance slightly above 0.05. The maximal modularity (0.14 for the spinglass.community algorithm) was obtained when plant and virus species were distributed into three modules (Fig. 3b). There was no
obvious property shared by viruses belonging to the same module but a strong association between modules and plant botanical families. Module 1 contained a majority of plants (seven of 11 species) of the Fabaceae, whereas modules 2 and 3 comprised almost exclusively plants of the Amaranthaceae (seven of eight) and Solanaceae (eight of nine), respectively (Fig. 3b).

These patterns reflect two groups of plant viruses. On the one hand, ‘generalist’ viruses with broad host ranges were identified within module 1 and tended to possess the capacity to infect plants of any module. They contributed mainly to the nested pattern of the matrix. On the other hand, ‘specialist’ viruses belonging to modules 2 and 3 were mostly able to infect plants belonging to their own module and ensured the modular pattern of the matrix (Fig. 3b).

DISCUSSION

A major asset of the VIDE database is the compilation of experimental, rather than only natural, host range data. This allowed us to identify properties linked to the intrinsic capacity of the virus to infect a set of plants, irrespective of the exposure of these plants to the virus in natural conditions. Consequently, our analyses can be useful to estimate the risks of future emergence in new plant species for a virus possessing a given set of traits if plant exposure conditions were to change. As for any large dataset, there are a number of pitfalls to avoid for analyses and interpretation of the results. These pitfalls can be related to (i) the exhaustiveness of the database and to (ii) the precision and (iii) accuracy of HRB estimates obtained from the database.

The database is based on the literature available in 1996 and has not been updated since. It includes host range data for 480 virus species, which represents 53% of the total number (900) of plant virus species accepted in the latest International Committee on Taxonomy of Viruses (ICTV) report [19, 20]. The 19 virus families accepted to date are represented by at least 40% of their species members, except Geminiviridae (29 species of 196), Bunyaviridae (two of eight), Ophioviridae (zero of six) and Endornaviridae (zero of four). The major quantitative difference between the viruses in the database and the present taxonomy is the huge increase of species in the genus Begomovirus (family Geminiviridae), for the majority of which few HRB data are available. If we withdraw the 167 begomovirus species absent from the database, our dataset represents 66% of the total virus species. Twelve virus genera which include few species (2.3 on average) are not represented in the dataset, of a total of 85 genera. Concerning the plant species used to estimate HRB, it should be emphasized that virologists use more and more genome sequence data to characterize virus species to the detriment of host range data. In summary, the database is quite exhaustive and the missing virus species are quite evenly distributed across genera and families. However, care should be taken about the interpretation of our results for some virus taxa when few HRB data are

![Fig. 3. Evidence of nestedness (a) and modularity (b) in a 37 virus species x 28 plant species infectivity matrix. The two matrices correspond to the same dataset after permutation of lines and columns. Black boxes correspond to hosts (infection) and white boxes to non-hosts (no infection). Grey boxes correspond to missing data. Modularity analyses allowed us to identify three modules (delineated by grey lines), partially associated with three plant families. Module 1 contained the following plant species: Trifolium repens, Trifolium incarnatum, Solanum tuberosum, Lactuca sativa, Brassica campestris, Glycine max, Pisum sativum, Vicia faba, Vigna unguiculata, Cucumis sativus and Phaseolus vulgaris, and the following virus species: BNYV (beet western yellows polerovirus), AMV (alfalfa mosaic alfamovirus), CMV (cucumber mosaic cucumovirus), TRSV (tobacco ringspot nepovirus), TSV (tobacco streak ilarivirus), SLRSV (strawberry latent ringspot potyvirus), RCNMV (red clover necrotic mossvirus), SMV (soybean mosaic potyvirus), CymRSV (cymbidium ringspot tombusvirus), PFBV (pelargonium flower break carmovirus), TNV-A (tobacco necrosis A nepovirus), BYMV (bean yellow mosaic potyvirus), HVS (helenium carlavirus S), PSbMV (pea seed-borne mosaic potyvirus), SqMV (squash mosaic comovirus), BNYV (bean necrotic yellow vein benyivirus) and CPMMV (cowpea mild mottle carlavirus). Module 2 contained the following plant species: Cucurbita pepo, Chenopodium album, Spinacia oleracea, Tetragonia tetragonoides, Beta vulgaris, Gomphrena globosa, Chenopodium amaranticolor and Chenopodium quinoa, and the following virus species: CarMV (carnation mottle carmovirus), OMKV (okra mosaic tymovirus), CVMV (carnation vein mottle potyvirus), AcMV (arabis mosaic nepovirus), HLV (heracleum latent vitivirus), TuMV (turnip mosaic potyvirus), BtMV (beet mosaic potyvirus), CymRSV (cymbidium ringspot tombusvirus), PFBV (pelargonium flower break carmovirus), TNV-A (tobacco necrosis A nepovirus), BYMV (bean yellow mosaic potyvirus), HVS (helenium carlavirus S), PSbMV (pea seed-borne mosaic potyvirus), SqMV (squash mosaic comovirus), BNYV (bean necrotic yellow vein benyivirus) and CPMMV (cowpea mild mottle carlavirus). Module 3 contained the following plant species: Nicotiana tabacum, Nicotiana glutinosa, Nicotiana clevelandii, Lycopersicon esculentum, Petunia x hybrida, Zinnia elegans, Nicotiana rustica, Physalis floridana and Datura stramonium, and the following virus species: TEV (tobacco etch potyvirus), CBV (chrysanthemum B carlavirus), SPMMV (sweet potato mild mottle ipomovirus), RMV (ribgrass mosaic tobamovirus), PopMV (poplar mosaic carlavirus), PTV (peru tomato mosaic potyvirus), PVMV (pepper vein mottle potyvirus) and PhMV (physalis mosaic tymovirus).]
available due to the peculiarities of the virus biology (see below).

Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.

The unequal distribution of the assayed plant species across plant taxa may affect the accuracy of HRB estimation. Consequently, we analysed the links between virus HRB and genome or transmission properties using datasets with plant taxa may affect the accuracy of HRB estimation. Concerning the precision of HRB estimates, a limiting factor is the number of assayed plant species, which varies between viruses and can be small for some of them. To minimize the impact of this source of imprecision, we defined a reduced set of 293 plant viruses for which the absHRB and relHRB were fairly well correlated, indicating that representative sets of plants were used to characterize virus HRB (Method S1). We then analysed separately the absHRB in the 480- and 293-virus datasets and the relHRB in the 293-virus dataset (Table S1). Importantly, most relationships between virus HRB and biological properties were highly significant for the three HRB estimates. The robustness of these results minimizes the risk that they would have been affected by imprecisions in HRB estimation.
three, genome segments (Table 1). It is noteworthy that this was not due to a number of viruses with three genome segments that possess extremely large host ranges, especially Cucumber mosaic virus, Tomato spotted wilt virus and Alfalfa mosaic virus. Indeed, the Kruskal–Wallis test used is based on ranks and therefore is not artificially influenced by extreme HRB values. Moreover, the SEG variable remained significantly linked to HRB after withdrawing these three viruses from the datasets ($P=1.2 \times 10^{-3}$ to 3.7×10^{-3}). Hypotheses regarding the advantage of virus genome segmentation are longstanding [25]. It was proposed that segmentation increases genome stability, replication fidelity and/or replication rapidity [26–28]. Genome segmentation could also allow better regulation of gene expression [29] and, in the longer term, could favour genome exchanges through reassortment between virus isolates, which can be advantageous for virus adaptation in a changing environment (the so-called 'advantage of sex'; [30]). In contrast, the low within-host effective population size of plant viruses may be the main limitation of genome segmentation. Only a small number of virus particles contribute to the infection of an individual plant cell and hence the multiplicity of infection (MOI) is now considered to be low, though variable over time, for plant viruses [31, 32]. A consequence of virus genome segmentation is that the minimum MOI required for infection would increase very rapidly as the number of genome segments increases. This suggests an optimum number of genome segments (three or four), for which the advantages of genome segmentation are not counterbalanced by the necessity of higher m.o.i. values [33]. Interestingly, the observation that viruses with more than three genome segments have narrower host ranges, on average, lends support to this hypothesis (Table 1).

The larger host range of seed-transmitted viruses (Table 1; [17]) seems counterintuitive, since seed transmission through the embryo is often associated with host specialization. For example, dsRNA plant viruses of the family Endornaviridae and of the genera Alphacryptovirus and Betacryptovirus (family Partitiviridae) are transmitted by ovule and by pollen to the seed and their host range is restricted to about one plant species because of the lack of horizontal spread, mechanical transmission and even graft transmission [19]. The 480-virus dataset contained only 22 members of the family Partitiviridae and no member of the family Endornaviridae, which may have led to a general overestimation of the average HRB of seed-transmitted viruses. An ultimate cause of the broader host range of some groups of seed-transmitted viruses could be linked to the probability of infecting new, healthy plants. A trade-off has been observed between the efficiency of vertical seed transmission and horizontal transmission in some plant viruses [34]. As a consequence, seed transmission could decrease the probability of infecting new plants through horizontal transmission. This negative effect could be compensated for by a broader host range, offering more opportunities for virus dissemination. This evolutionary trend would only be of interest for viruses with mixed (i.e. both vertical and horizontal) transmission modes. Confirming this hypothesis, plant viruses transmitted both through seeds and by vectors have a broader host range than viruses with no vector transmission or with exclusive vector transmission (data not shown and [17]). An alternative hypothesis, with a causal link in the opposite direction, could be that viruses with a broader host range have more opportunities of being seed-transmitted in at least one of their host species. Indeed, many plant viruses are transmitted through seeds only in a small subset of their host species. Overall, we postulate that two different groups of seed-transmitted viruses should be distinguished: those that are also transmitted horizontally by vectors exhibit large host ranges and those that are exclusively transmitted vertically show an extremely narrow host range.

Finally, the host range of nematode-transmitted viruses was about twice as large as that of viruses transmitted by arthropods, fungi or without vectors (Table 1; [17]). Again, an explanation for the broader host range of nematode-transmitted viruses could be linked to the probability of infecting new plants. Because of the poor migration capacity of their vectors (only a few centimetres per year in uncultivated woodland habitats; [35]), nematode-borne viruses could have evolved broader host ranges to increase their chance of infecting new plants. The same tendency was not observed for other soil-borne viruses, such as those transmitted by fungi (Table 1), which may be due to the fact that fungal vectors may have a higher dissemination capacity than nematodes and/or that nematode-borne viruses are more prone to becoming extinct after the death of their host.

METHODS

Plant virus database

Plant virus host range data were obtained from the VIDE (Virus Identification Data Exchange) database [15], which includes a list of host and non-host plant species for each virus species. Non-hosts have been determined by controlled laboratory inoculation experiments, whereas hosts include both naturally and experimentally infected species. Local-lesion hosts, in which the virus multiplies and moves from cell to cell in the inoculated organs to some extent, are considered as hosts in the database. This is justified by the facts that (i) local lesions result from hypersensitive reactions triggered by gene-for-gene interactions between the plant and the virus (e.g. [36, 37]), (ii) mutations in the plant resistance gene and/or in the virus avirulence gene can allow full systemic infection [38–40] and (iii) environmental conditions can abolish the expression of the resistance in local-lesion plants and lead to full susceptibility [41]. Plant species included in both the host and the non-host lists for a given virus species were considered as hosts. Indeed, these differences were due to the choice of plant and virus genotypes in different studies and were probably the result of intraspecific variability affecting host resistance and/or virus pathogenicity. The list of host and non-host plant species for each virus species was copied from the database to Excel.
in April 2009 and then formatted using the R software version 3.0.2 [42].

Among the virus species described in the database, we kept only those considered as definitive or tentative species in the latest ICTV report [19]. Virus taxonomy at the genus or higher ranks was as proposed by ICTV. Biological properties of viruses were obtained from Brunt et al. [15] and King et al. [19].

Estimating HRB of plant viruses and tackling potential biases

A total of 480 viral species contained host range data in the database. The most obvious estimate of virus HRB is the absHRB. However, this estimate can be affected by precision and accuracy issues. First, the total number of assayed plant species varies greatly between virus species, which affects the precision of HRB estimates. For example, absHRB usually underestimates the HRB of viruses for which experimental inoculation is difficult to implement (no artificial inoculation method, vector unknown, vector difficult to raise, no horizontal transmission). To tackle this issue, we analysed the reHRB. To ensure a satisfactory precision for reHRB, we restricted the dataset to the 293 virus species for which a minimal number of $n=15$ plant species were assayed (see Method S1 for justification; Table S1). Second, the distribution of assayed plant species across plant taxa also varies greatly between virus species, which can be a source of bias. For example, if a large number of plant species of the same genus as the one where the virus was initially isolated are assayed, this may artificially increase the HRB estimate because there are relatively fewer infection barriers at this plant taxonomic rank. To tackle this source of bias, we restricted the dataset to virus species for which a minimal diversity of plant genera or families was assayed, as assessed by Hill’s diversity. For each virus species, the diversity of assayed plant species was calculated at different plant taxonomic levels (genus, family, …) with the Hill numbers [16], of increasing use in ecology [43]. Hill [16] integrated taxon richness and abundance into a class of diversity measures (Hill numbers) defined for $q \neq 1$ as:

$$qD = \left(\sum_{i=1}^{S} p_i^q \right)^{1/(1-q)} \quad (1)$$

in which S is the number of taxa in the sample, and the ith taxon ($i=1, 2, \ldots, S$) has relative abundance p_i. The parameter q determines the sensitivity of the measure to the relative frequencies. For $q=0$, the abundances of individual taxa do not contribute to the sum in equation (1), so that D corresponds to taxon richness. For $q=1$, equation (1) is undefined, but its limit as q tends to 1 is the exponential of the Shannon index:

$$1D = \exp \left(- \sum_{i=1}^{S} p_i \times \log p_i \right) \quad (2)$$

The variable qD weighs species in proportion to their frequency. When $q=2$, equation (1) yields Simpson diversity, which places more weight on the frequencies of abundant taxa and discounts rare taxa. Usually, a characterization of the taxon diversity of a sample with S taxa and relative abundances (p_1, p_2, \ldots, p_S) is conveyed by a diversity profile (a plot of qD vs q from $q=0$ to $q=3$). In the analysis of assayed plant species, we found that the Hill numbers of order $q=0$ to $q=3$ were highly correlated ($r>0.90$) at the genus or at the family level, but less correlated between the genus and family levels (data not shown). Consequently, we chose different minimal thresholds of qD calculated at the genus and at the family levels (Hill$_{gen}$ and Hill$_{fam}$) to analyse the robustness of our results (Table S1).

Relationships between HRB and biological properties of plant viruses

To unravel virus properties explaining differences in HRB, the response variables absHRB and relHRB were compared among groups of viruses sharing the same biological or transmission traits (putative explanatory categorical variables). These traits represent major life history traits or genome properties of plant viruses:

- the genome nature, categorized as ss or ds RNA or DNA (variable ‘GEN’);
- the number of genome segments, viruses with more than three genome segments being grouped into the same category because they were underrepresented in the database (20 species) (variable ‘SEG’);
- the occurrence and mode of vertical transmission, categorized as (i) seed transmission and (ii) no seed transmission (variable ‘VER’);
- the occurrence and mode of abiotic horizontal transmission, categorized as (i) graft transmission (when some host plants are usually multiplied by grafting) but no substrate, tool or contact transmission, (ii) substrate (i.e. soil or irrigation water) transmission but no tool or contact transmission, (iii) tool transmission but no contact transmission, (iv) contact transmission between plants and (v) no abiotic horizontal transmission known;
- the vector type, categorized as (i) aphid, (ii) whitefly, (iii) other Hemiptera, (iv) Coleoptera, (v) thrips, (vi) mite, (vii) fungus or soil-borne protists (named collectively fungus for simplicity), (viii) nematode and (ix) no vector known;
- the vector type defined as previously but with arthropods grouped into a single category (variable ‘VEC’);
- the mode of vector transmission, categorized as (i) non-vector, (ii) non-circulative (non- or semi-persistent), (iii) circulative (i.e. persistent but non-multiplicative) and (iv) circulative-multiplicative.

Variables linked to nucleotide composition or within-species genetic diversity or evolutionary constraints were not included because of the lack of data for a large set of viruses in the database. Additional variables did not provide
consistent results (number of vector species) or are con-
found with other variables (genome linearity or circular-
ity) and are therefore not presented.

All statistical analyses were performed with the R software
version 3.0.2. First, we performed MCAs using the package
FactoMineR’ to analyse the correlations and putative
redundancy between the explanatory variables. Then, an
analysis of the links between HRB estimates and each
explanatory variable was performed. Since residues of linear
models explaining absHRB or relHRB with any of the
explanatory variables departed significantly from a normal
distribution, we used non-parametric Kruskal–Wallis tests,
using the package ‘pgirmess’, to assess the significance of
the link between HRB estimates and each explanatory vari-
able and to compare the HRB between virus categories.
Additionally, regression trees were realized to explore the
effect of the most significant explanatory variables on HRB.
We used the conditional inference trees method ‘ctree’
implemented in the package ‘party’ with a minimum num-
ber of 15 viruses in each terminal ‘leaf’ of the tree and
default setting for other parameters to describe the condi-
tional distribution of absHRB and relHRB as a function of
the four categorical variables GEN, SEG, VER and VEC.

Relationships between virus host range and plant
taxonomy

Different diversity indices were calculated to unravel the
links between the host status of plant species and their taxo-
nomic proximity. For each virus species, host diversity was
calculated as presented before with the Hill numbers of
order $q=0$ to $q=3$. The mean Hill numbers of host plants
for all virus species that we obtained for $q=0$ to $q=3$ were
compared among plant taxonomic ranks with Kruskal–
Wallis tests.

Plant taxonomy was according to Brunt et al. [15] and Wat-
son and Dallwitz [44, 45] at the species, genus and family
ranks and according to Stevens [46] at higher ranks.

Structure of the plant–virus infectivity matrix

Infectivity matrices, where a set of parasite species or geno-
types are confronted to a set of host species or genotypes,
contain binary data related to parasites’ host range (e.g. 1
for hosts and 0 for non-hosts). Structural patterns of such
matrices, notably their modularity and nestedness, vary
depending on host range evolution at the species or intra-
specific levels [18, 47–49]. In a nested pattern, the host
range of the more specialized virus is assigned to the host
range of less specialized viruses, leading to a stair-shaped
pattern for host cases. This corresponds to a host range
expansion pattern of virus evolution. In contrast, a modular
pattern, where each virus is specialized to infect one (or a
small set of) host species, corresponds to a host shift pattern
of evolution. In that case, viruses become specialized on
new hosts at the cost of losing infectivity on older hosts.

Methods to estimate nestedness and modularity are described in detail by Weitz et al. [18] and were computed
using the ‘bipartite’ and ‘igraph’ packages, respectively.
Because these methods do not accept missing data (plant–
virus combinations for which the host status is unknown),
the first step was to extract a sub-matrix from the database
with a good compromise between the number of plant and
virus species and the amount of missing data. For this, the
lines and columns of the initial matrix were permutated to
rank plant and virus species by increasing numbers of miss-
ing data, evidencing a 37 virus species \times 28 plant species
subset containing only 9.8% of missing data, which was
subsequently analysed. Attempts to analyse larger matrices
were not successful because of too many missing data (data
not shown). We then simulated the host/non-host status for
missing data. Two approaches were followed: (i) the host/
non-host status of missing data was set as proportional to
the total amounts of host and non-host cases in the rest of
the infectivity matrix (Bernoulli model) and (ii) each plant–
virus combination missing in the matrix was assigned a
probability of being a host case, which was equal to the
mean of the frequencies of host cases in the same column
and in the same line of the initial matrix (probabilistic
degree model). In both cases, 100 filled matrices were simu-
lated. For assessment of statistical significance, the nested-
ness and modularity of the infectivity matrices filled as
described previously were compared to two different null
models [18]: (i) the Bernoulli random null model, where the
same total number of host cases as in the filled matrix was
randomly distributed in matrices containing the same num-
ber of lines and columns as the filled matrix, and (ii) the
probabilistic degree null model, where each plant–virus
combination was assigned a probability of corresponding to
a host case, which was equal to the mean of the frequencies
of host cases in the same column and in the same line of the
filled matrix. Each of the 100 filled matrices was compared
to 1000 matrices generated under both null models.

Funding information

This work was supported by the MIE (Maladies Infectieuses Emer-
gentes) interdisciplinary programme of CNRS (Centre National de la
Recherche Scientifique). The funders did not play any role in the study
or in the preparation of the article or decision to publish.

Acknowledgements

Thanks to Véronique Decognet for efficient help in the management of
the database, to Denis Fargette and Hervé Lecoq for providing the
spark to this study and to Thierry Candresse, Mark Tepfer, Karine
Berthier, Stéphane Blanc and Julien Papaix for help in analyses and/
or constructive comments on the manuscript.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

1. Woolhouse MEJ, Hayden DT, Antia R. Emerging pathogens: the
epidemiology and evolution of species jumps. Trends Ecol Evol
2005;20:238–244.
2. Schrag SJ, Wiener P. Emerging infectious disease: what are the
relative roles of ecology and evolution? Trends Ecol Evol 1995;10:
319–324.
3. Pulliam JRC. Viral host jumps: moving toward a predictive frame-

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as 'excellent' or 'very good'.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.