1887

Abstract

Histone H4, a nucleosome subunit in eukaryotes, plays crucial roles in DNA package and regulation of gene expression through covalent modification. A viral histone H4 encoded in bracovirus (CpBV), a polydnavirus, is called . It is highly homologous to other histone H4 proteins excepting 38 extra amino acid residues in the N terminus. can form octamer with other histone subunits and alter host gene expression. In this study, was transiently expressed in a natural host () and its suppressive activity on host gene expression was evaluated by the suppressive subtractive hybridization (SSH) technique. The SSH targets down-regulated by were read with the 454 pyrosequencing platform and annotated using the genome of . The down-regulated genes (610 contigs) were annotated in most functional categories based on gene ontology. Among these SSH targets, 115 genes were functionally distinct, including two chromatin remodelling factors: a lysine-specific demethylase () and a chromatin remodelling complex [ (tch/ucrose on-ermentable)]. was highly expressed in all tested tissues during the entire larval period. Suppression of expression by specific RNA interference (RNAi) significantly (<0.05) reduced haemocyte nodule formation in response to immune challenge and impaired both larval and pupal development. was expressed in all developmental stages. Suppression of expression by RNAi reduced cellular immune response and interfered with adult metamorphosis. These results suggest that can alter host gene expression by interfering with chromatin modification and remodelling factors in addition to its direct epigenetic control activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000560
2016-10-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/97/10/2780.html?itemId=/content/journal/jgv/10.1099/jgv.0.000560&mimeType=html&fmt=ahah

References

  1. Aasland R., Stewart A. F., Gibson T. 1996; The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci 21:87–88 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z. 1997; Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Armstrong J. A., Papoulas O., Daubresse G., Sperling A. S., John T. L., Matthew P. S., John W. T. 2002; The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J 21:5245–5254 [View Article][PubMed]
    [Google Scholar]
  4. Bae S., Kim Y. 2004; Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella . Comp Biochem Physiol A 138:39–44 [View Article]
    [Google Scholar]
  5. Bae S., Kim Y. 2009; IkB genes encoded in Cotesia plutellae bracovirus suppress an antiviral response and enhance baculovirus pathogenicity against the diamondback moth, Plutella xylostella . J Invertebr Pathol 102:79–87 [View Article][PubMed]
    [Google Scholar]
  6. Bahk Y. Y., Kim S. A., Kim J., Euh H., Bai G., Cho S., Kim Y. S. 2004; Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4:3299–3307 [View Article][PubMed]
    [Google Scholar]
  7. Black J. C., Allen A., Van R. C., Forbes E., Longworth M., Tschöp K., Rinehart C., Quiton J., Walsh R. et al. 2010; Conserved Antagonism between JMJD2A/KDM4A and HP1γ during Cell Cycle Progression. Mol Cell 40:736–748 [View Article][PubMed]
    [Google Scholar]
  8. Bézier A., Herbinière J., Lanzrein B., Drezen J. M. 2009; Polydnavirus hidden face: The genes producing virus particles of parasitic wasps. J Invertebr Pathol 101:194–203 [View Article][PubMed]
    [Google Scholar]
  9. Bézier A., Louis F., Jancek S., Periquet G., Thézé J., Gyapay G., Musset K., Lesobre J., Lenoble P. et al. 2013; Functional endogenous viral elements in the genome of the parasitoid wasp Cotesia congregata: insights into the evolutionary dynamics of bracoviruses. Philos Trans R Soc Lond B Biol Sci 368:20130047 [View Article][PubMed]
    [Google Scholar]
  10. Burke G. R., Strand M. R. 2014; Systematic analysis of a wasp parasitism arsenal. Mol Ecol 23:890–901 [View Article][PubMed]
    [Google Scholar]
  11. Cairns B. R. 2007; Chromatin remodeling: insights and intrigue from single-molecule studies. Nat Struct Mol Biol 14:989–996 [View Article][PubMed]
    [Google Scholar]
  12. Chen Y. F., Gao F., Ye X. Q., Wei S. J., Shi M., Zheng H. J., Chen X. X. 2011; Deep sequencing of Cotesia vestalis bracovirus reveals the complexity of a polydnavirus genome. Virology 414:42–50 [View Article][PubMed]
    [Google Scholar]
  13. Clark K. D., Kim Y., Strand M. R. 2005; Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J Insect Physiol 51:587–596 [View Article][PubMed]
    [Google Scholar]
  14. Cogill P., Finn R. D., Bateman A. 2008; Identifying protein domains with Pfam database. Curr Protoc Bioinformatics 235:17
    [Google Scholar]
  15. Conesa A., Götz S., García-Gómez J. M., Terol J., Talón M., Robles M. 2005; Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676 [View Article][PubMed]
    [Google Scholar]
  16. Eddy S. R. 1998; Profile hidden Markov models. Bioinformatics 14:755–763 [View Article][PubMed]
    [Google Scholar]
  17. Espagne E., Dupuy C., Huguet E., Cattolico L., Provost B., Martins N., Poirié M., Periquet G., Drezen J. M. 2004; Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306:286–289 [View Article][PubMed]
    [Google Scholar]
  18. Fleming J. G., Summers M. D. 1991; Polydnavirus DNA is integrated in the DNA of its parasitoid wasp host. Proc Natl Acad Sci U S A 88:9770–9774 [View Article][PubMed]
    [Google Scholar]
  19. Gad W., Kim Y. 2008; A viral histone H4 encoded by Cotesia plutellae bracovirus inhibits haemocyte-spreading behaviour of the diamondback moth, Plutella xylostella . J Gen Virol 89:931–938 [View Article][PubMed]
    [Google Scholar]
  20. Gad W., Kim Y. 2009; N-terminal tail of a viral histone H4 encoded in Cotesia plutellae bracovirus is essential to suppress gene expression of host histone H4. Insect Mol Biol 18:111–118 [View Article][PubMed]
    [Google Scholar]
  21. Götz S., García-Gómez J. M., Terol J., Williams T. D., Nagaraj S. H., Nueda M. J., Robles M., Talón M., Dopazo J., Conesa A. 2008; High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435 [View Article][PubMed]
    [Google Scholar]
  22. Grüne T., Brzeski J., Eberharter A., Clapier C. R., Corona D. F., Becker P. B., Müller C. W. 2003; Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12:449–460 [View Article][PubMed]
    [Google Scholar]
  23. Haidl G., Becker A., Henkel R. 1991; Poor development of outer dense fibers as a major cause of tail abnormalities in the spermatozoa of asthenoteratozoospermic men. Hum Reprod 6:1431–1438
    [Google Scholar]
  24. Hepat R., Kim Y. 2011; Transient expression of a viral histone H4 inhibits expression of cellular and humoral immune-associated genes in Tribolium castaneum . Biochem Biophys Res Commun 415:279–283 [View Article][PubMed]
    [Google Scholar]
  25. Hepat R., Kim Y. 2012; In vivo transient expression for the functional analysis of polydnaviral genes. J Invertebr Pathol 111:152–159 [View Article][PubMed]
    [Google Scholar]
  26. Hepat R., Song J. J., Lee D., Kim Y. 2013; A viral histone h4 joins to eukaryotic nucleosomes and alters host gene expression. J Virol 87:11223–11230 [View Article][PubMed]
    [Google Scholar]
  27. Ibrahim A. M., Kim Y. 2006; Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella . J Insect Physiol 52:943–950 [View Article][PubMed]
    [Google Scholar]
  28. Karouzakis E., Gay R. E., Gay S., Neidhart M. 2012; Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 64:1809–1817 [View Article][PubMed]
    [Google Scholar]
  29. Klose R. J., Yamane K., Bae Y., Zhang D., Erdjument-Bromage H., Tempst P., Wong J., Zhang Y. 2006; The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316 [View Article][PubMed]
    [Google Scholar]
  30. Lessard J., Wu J. I., Ranish J. A., Wan M., Winslow M. M., Staahl B. T., Wu H., Aebersold R., Graef I. A., Crabtree G. R. 2007; An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55:201–215 [View Article][PubMed]
    [Google Scholar]
  31. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  32. Loh Y. H., Zhang W., Chen X., George J., Ng H.-H. 2007; Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 21:2545–2557 [View Article][PubMed]
    [Google Scholar]
  33. Margueron R., Trojer P., Reinberg D. 2005; The key to development: interpreting the histone code?. Curr Opin Genet Dev 15:163–176 [View Article][PubMed]
    [Google Scholar]
  34. Martin C., Zhang Y. 2005; The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849 [View Article][PubMed]
    [Google Scholar]
  35. Masliah-Planchon J., Bièche I., Guinebretière J. M., Bourdeaut F., Delattre O. 2015; SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol 10:145–171 [View Article][PubMed]
    [Google Scholar]
  36. Mine E., Sakurai H., Izumi S., Tomino S. 1995; The fat body cell-free system for tissue-specific transcription of plasma protein gene of Bombyx mori . Nucleic Acids Res 23:2648–2653 [View Article][PubMed]
    [Google Scholar]
  37. Murray K. 1964; The occurrence of epsilon-N-methyl lysine in histones. Biochem 3:10–15 [View Article][PubMed]
    [Google Scholar]
  38. Nalini M., Kim Y. 2007; A putative protein translation inhibitory factor encoded by Cotesia plutellae bracovirus suppresses host hemocyte-spreading behavior. J Insect Physiol 53:1283–1292 [View Article][PubMed]
    [Google Scholar]
  39. Neigeborn L., Carlson M. 1984; Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae . Genetics 108:845–858
    [Google Scholar]
  40. Nottke A., Colaiacovo M. P., Shi Y. 2009; Developmental roles of the histone lysine demethylases. Development 136:879–889 [View Article][PubMed]
    [Google Scholar]
  41. Paik W. K., Kim S. 1971; Protein methylation. Science 174:114–119 [View Article][PubMed]
    [Google Scholar]
  42. Park B., Kim Y. 2010; Transient transcription of a putative RNase containing BEN domain encoded in Cotesia plutellae bracovirus induces an immunosuppression of the diamondback moth, Plutella xylostella . J Invertebr Pathol 105:156–163 [View Article][PubMed]
    [Google Scholar]
  43. Phelan M. L., Sif S., Narlikar G. J., Kingston R. E. 1999; Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell 3:247–253 [View Article][PubMed]
    [Google Scholar]
  44. Popov N., Gil J. 2010; Epigenetic regulation of the INK4b-ARF-INK4a locus: in sickness and in health. Epigenetics 5:685–690 [View Article][PubMed]
    [Google Scholar]
  45. Qi Y., Teng Z., Gao L., Wu S., Huang J., Ye G., Fang Q. 2015; Transcriptome analysis of an endoparasitoid wasp Cotesia chilonis (Hymenoptera: Braconidae) reveals genes involved in successful parasitism. Arch Insect Biochem Physiol 88:203–221 [View Article][PubMed]
    [Google Scholar]
  46. Rea S., Eisenhaber F., O'Carroll D., Strahl B. D., Sun Z. W., Schmid M., Opravil S., Mechtler K., Ponting C. P. et al. 2000; Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599 [View Article][PubMed]
    [Google Scholar]
  47. SAS Institute Inc. 1989 SAS/STAT User’s Guide, Release 6.03 edn. Cary, NC: SAS Institute;
    [Google Scholar]
  48. Shi Y., Lan F., Matson C., Mulligan P., Whetstine J. R., Cole P. A., Casero R. A., Shi Y. 2004; Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953 [View Article][PubMed]
    [Google Scholar]
  49. Simon J. A., Tamkun J. W. 2002; Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 12:210–218 [View Article][PubMed]
    [Google Scholar]
  50. Stern M., Jensen R., Herskowitz I. 1984; Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178:853–868 [View Article][PubMed]
    [Google Scholar]
  51. Strand M. R., Burke G. R. 2013; Polydnavirus-wasp associations: evolution, genome organization, and function. Curr Opin Virol 3:587–594 [View Article][PubMed]
    [Google Scholar]
  52. Strobl-Mazzulla P. H., Sauka-Spengler T., Bronner-Fraser M. 2010; Histone demethylase JmjD2A regulates neural crest specification. Dev Cell 19:460–468 [View Article][PubMed]
    [Google Scholar]
  53. Takeuchi T., Watanabe Y., Takano-Shimizu T., Kondo S. 2006; Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 235:2449–2459 [View Article][PubMed]
    [Google Scholar]
  54. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  55. Tong J. K., Hassig C. A., Schnitzler G. R., Kingston R. E., Schreiber S. L. 1998; Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921 [CrossRef]
    [Google Scholar]
  56. Tsukada Y., Fang J., Erdjument-Bromage H., Warren M. E., Borchers C. H., Tempst P., Zhang Y. 2006; Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816 [CrossRef]
    [Google Scholar]
  57. Tsurumi A., Dutta P., Dutta P., Yan S. J., Sheng R., Li W. X. 2013; Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling. Sci Rep 3:2894 [View Article][PubMed]
    [Google Scholar]
  58. Volkoff A. N., Jouan V., Urbach S., Samain S., Bergoin M., Wincker P., Demettre E., Cousserans F., Provost B. et al. 2010; Analysis of virion structural components reveals vestiges of the ancestral ichnovirus genome. PLoS Pathog 6:e1000923 [View Article][PubMed]
    [Google Scholar]
  59. Webb B. A., Beckage N. E., Hayakawa Y., Krell P. J., Lanzrein B., Stoltz D. B., Strand M. R., Summers M. D. 2000; Polydnaviridae. In Virus Taxonomy , pp. 253–260 Edited by van Regenmortel M. H. V., Maniloff J., Mayo M. A., McGeoch D. J., Preingle C. R., Wickner R. B. New York: Academic Press;
    [Google Scholar]
  60. Webb B. A., Strand M. R., Dickey S. E., Beck M. H., Hilgarth R. S., Barney W. E., Kadash K., Kroemer J. A., Lindstrom K. G. et al. 2006; Polydnavirus genomes reflect their dual roles as mutualists and pathogens. Virology 347:160–174 [View Article][PubMed]
    [Google Scholar]
  61. Whetstine J. R., Nottke A., Lan F., Huarte M., Smolikov S., Chen Z., Spooner E., Li E., Zhang G. et al. 2006; Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481 [View Article][PubMed]
    [Google Scholar]
  62. Wu J. I., Lessard J., Crabtree G. R. 2009; Understanding the words of chromatin regulation. Cell 136:200–206 [View Article][PubMed]
    [Google Scholar]
  63. Ye L., Fan Z., Yu B., Chang J., Al Hezaimi K., Zhou X., Park N.-H., Wang C.-Y. 2012; Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs. Cell Stem Cell 11:50–61 [View Article][PubMed]
    [Google Scholar]
  64. You M., Yue Z., He W., Yang X., Yang G., Xie M., Zhan D., Baxter S. W., Vasseur L. et al. 2013; A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45:220–225 [View Article]
    [Google Scholar]
  65. Zhang Y., Reinberg D. 2001; Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360 [View Article][PubMed]
    [Google Scholar]
  66. Zhou B., Riddiford L. M. 2001; Hormonal regulation and patterning of the broad-complex in the epidermis and wing discs of the tobacco hornworm, Manduca sexta . Dev Biol 231:125–137 [View Article][PubMed]
    [Google Scholar]
  67. Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., Crabtree G. R. 1998; Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636 [View Article][PubMed]
    [Google Scholar]
  68. Zraly C. B., Marenda D. R., Nanchal R., Cavalli G., Muchardt C., Dingwall A. K. 2003; SNR1 is an essential subunit in a subset of Drosophila brm complexes, targeting specific functions during development. Dev Biol 253:291–308 [View Article][PubMed]
    [Google Scholar]
  69. Zraly C. B., Middleton F. A., Dingwall A. K. 2006; Hormone-response genes are direct in vivo regulatory targets of Brahma (SWI/SNF) complex function. J Biol Chem 281:35305–35315 [View Article][PubMed]
    [Google Scholar]
  70. Zuo X., Echan L., Hembach P., Tang H. Y., Speicher K. D., Santoli D., Speicher D. W. 2001; Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins. Electrophoresis 22:1603–1615 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000560
Loading
/content/journal/jgv/10.1099/jgv.0.000560
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error