Evidence of ongoing replication in a human immunodeficiency virus type 1 persistently infected cell line

Isabel Olivares, Carmen Sánchez-Jiménez, Catarina Reis Vieira, Víctor Toledano, Mónica Gutiérrez-Rivas and Cecilio López-Galán

Servicio de Virología Molecular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain

Human immunodeficiency virus type 1 (HIV-1) persistently infected cell lines are characterized by the continuous viral production without cytopathic effect. However, it is not completely clear if this production is contributed only by viral transcription or also by new cycles of viral replication. We studied an HIV-1 persistently infected cell line, designated H61-D, providing evidence of new replication cycles as sustained by: (i) a decrease in viral production, measured by p24 protein, after treatment of the culture with 3'-azido-3'-deoxythymidine; (ii) detection of new integration events in the course of cell culture, and (iii) finding of two-long-terminal repeat circles in the cells.

H61-D cells were not infected by cell-free virus, but infection was possible by co-culture with another productive-infected cell line. In conclusion, ongoing viral replication is taking place in H61-D persistent cells and new infections are mediated by a cell-to-cell spread mechanism.

INTRODUCTION

A wide range of cell types are susceptible to infection by human immunodeficiency virus type 1 (HIV-1). Most of the viral replication ‘in vivo’ is taking place in activated CD4+ T-lymphocytes, but other cell types like macrophages, monocytes, CD8+ T-lymphocytes, B-lymphocytes, natural killer cells and follicular dendritic cells are also infected (Saksena et al., 2010). However, differential HIV-1 replicative patterns occur in these different cell types ranging from the massive replication in activated CD4+ T-lymphocytes to limited replication in macrophages or latency in resting memory CD4+ T-lymphocytes (Chun et al., 1997a; Haase, 1999). Moreover, cells in distinct anatomical sites, like lymphoid tissue, gastrointestinal tract, central nervous systems, genital tract and lung, may act as reservoirs for HIV-1 (reviewed by Eisele & Siliciano, 2012; Saksena et al., 2010).

Natural HIV-1 infection is considered a persistent infection because of continuous viral production. ‘In vivo’, a low-level residual viraemia persists in patients even after prolonged highly active antiretroviral therapy (HAART) (Dornadula et al., 1999; Palmer et al., 2008). However, the origin and mechanisms responsible for this residual viraemia still remain unclear. Since HIV-1 persists as a latent provirus in resting memory CD4+ T-lymphocytes (Chun et al., 1997b; Wong et al., 1997), one possible explanation for the residual viraemia is the reactivation of latently infected cells. But other authors question if these cells are the origin of the residual viraemia (Bailey et al., 2006; Brennan et al., 2009). Residual viraemia could also be explained by the existence of a low-level continuous viral replication in an unknown reservoir. Existence of viral replication is supported by the presence of two-long-terminal repeat (2-LTR) circles in patients on long-term treatment (Buzón et al., 2010), and by the evolution of viral sequences during HAART treatment in HIV-1-infected patients (Günthard et al., 1999).

Persistently infected cell lines have been widely used in many viruses to study persistent infections and to gain information on the mechanism of viral persistence, like in foot-and-mouth disease virus (Martin Hernández et al., 1994), hepatitis C virus (Zhong et al., 2006), lymphotropic minute virus (Ron & Tal, 1985), poliovirus (Gosselin et al., 2003), mouse hepatitis virus (Chen & Baric, 1996) or measles virus (Robinson et al., 2009). HIV-1 latency and its underlying mechanisms have been extensively studied in chronically infected cell lines, like ACH-2 (Folks et al., 1989), U1 (Folks et al., 1988), OM-10.1 (Butera et al., 1994) or J-Lat cells (Jordan et al., 2003). These cells have been used as ‘in vitro’ models for HIV-1 latency. These cell lines showed characteristics of latent infection, expressing virus only after cell activation, and they permitted the identification of cellular proteins controlling HIV-1 latency (Williams et al., 2007). These cells allowed the study of epigenetic regulators of HIV-1 latency, such as cytosine methylation (Kauder et al., 2009) or transcriptional interference by viral genome integration into actively transcribed host genes (Lenasi et al., 2008).
HIV-1 persistence with continuous viral production has not been studied much 'in vivo' and 'in vitro'. In previous work, three persistently infected cell lines were established using the same HIV-1 isolate (S61) and characterized in our laboratory (Sanchez-Merino et al., 2007). In this report, we describe the features of a cellular clone, named H61-D, derived from one of these HIV-1 persistently infected cell lines (H61). We provide several lines of evidence of ongoing viral replication and new infectious cycles in H61-D cells.

RESULTS

Characterization of the persistently HIV-1-infected H61-D cells

Persistently HIV-1-infected H61-D cells were obtained, as previously described (Sánchez-Jiménez et al., 2012), by limiting dilution cell cloning from a heterogeneous parental persistently infected cell line (H61). This cell line was obtained from infection of the human cutaneous T-cell lymphoma highly permissive for HIV-1 replication (H9 cells) with the S61 viral isolate (Sanchez-Merino et al., 2007). H61-D cells showed continuous viral production, as measured by p24 in supernatant, without cytopathic effect (CPE). Viral expression was detected by immunoﬂuorescence in 100% of H61-D cells, and the virus produced by the cells (named vH61-D) gave a titre of $5.1 \pm 4.4 \times 10^4$ TCID$_{50}$ ml$^{-1}$ in TZM-bl cells. vH61-D was infectious and cytopathic for H9 cells (data not shown). Table 1 summarizes the characteristics of this virus, as well as viruses derived from parental H61 or acutely infected H9 cells. Provirus quantification determined by Alu-PCR, showed two copies of integrated proviral DNA per cell.

Expression of CD4 receptor and CCR5 and CXCR4 co-receptors in H61-D cells was measured by flow cytometry (FACS), and compared with expression in H61 and uninfected H9 cells (Table 2). In contrast with H9, expression of CD4 was undetectable in H61-D and H61 cells. Co-receptors expression was not altered in H61-D cells. To further characterize these cells, expression of the activation markers CD25, CD69 and HLA-DR was measured by FACS (Table 2). Expression of CD69 and HLA-DR is higher in persistently infected cells than in H9 cell line, indicating cellular activation. In spite of this activation state, doubling time is the same in the persistently infected as in the uninfected cells (Table 2).

Decrease of viral production in H61-D cells with AZT treatment

To assess if new replication events are occurring in H61-D cells, cell cultures were treated with the reverse transcriptase inhibitor, 3′-azido-3′-deoxythymydine (AZT). Previously, several concentrations of AZT were assayed in H9 cells infected with vH61-D and complete inhibition of viral replication was obtained at doses higher than 1 μM (Fig. 1a). This treatment did not result in cell toxicity after 14 days, as measured by cell viability. Treatment of H61-D cells with 2 μM AZT caused a significant p24 level decrease of 18 ± 6%, when compared with a control culture without

| Table 1. Virological markers of the persistently and acutely HIV-1-infected cells |
|---------------------------------|-----------------|-----------------|-----------------|
| | H61-D | H61 | Acute infection* |
| p24 (pg ml$^{-1}$) | $4.1 \pm 0.7 \times 10^4$ | $2.5 \pm 0.5 \times 10^4$ | $2.4 \pm 0.69 \times 10^5$ |
| Viral titre (TCID$_{50}$ ml$^{-1}$) | $5.1 \pm 4.4 \times 10^4$ | $4.1 \pm 2.4 \times 10^4$ | $6.6 \pm 3.9 \times 10^7$ |
| Proviral DNA (copies per cell) | 2 | 2 | NA |
| CPE§ | Negative | Negative | Positive |

*Acute infection was carried out with V61virus in H9 cells (see Methods).
†Determined in TZM-bl cells. Values represent mean from three determinations ± SD.
‡Defined by quantitative Alu-PCR as described in Methods.
§Defined by the appearance of syncytia.

| Table 2. Cellular markers in persistently HIV-1-infected and parental cells |
|---------------------------------|-----------------|-----------------|-----------------|
| | H61-D | H61 | H9 |
| Doubling time (days)* | 1.07 ± 0.19 | 1.05 ± 0.14 | 1.04 ± 0.08 |
| CD4$^+$ (%)† | UD‡ | UD | 55.92 ± 20.31 |
| CXCR4$^+$ (%)† | 90.6 ± 9.7 | 89.9 ± 8.72 | 92 ± 7.8 |
| CCR5$^+$ (%)† | 83.5 ± 0.7 | 33.29 ± 0.41 | 85.5 ± 6.36 |
| CD25§ | 4.97 ± 2.1 | 2.2 ± 1.6 | 7.3 ± 3.5 |
| CD69§ | 10.3 ± 10.1 | 17.6 ± 10.6 | 4.6 ± 2.3 |
| HLA-DR§ | 68.5 ± 30.5 | 77.9 ± 25.5 | 4.3 ± 3.6 |

*Doubling time was calculated during exponential cell growth.
†Determined by FACS. Values represent mean from three or four determinations ± SD.
‡UD, Undetectable by FACS analysis.
treatment (Fig. 1b). This result indicates the occurrence of new rounds of reverse transcription in H61-D cells.

Analysis of the proviral integration sites in H61-D cells

Investigation of the proviral integration sites in H61-D cells was carried out in the initial stock (passage 0). To detect the HIV-1 integration sites, as explained in Methods, total cellular DNA from H61-D cells was digested with PstI, religated and amplified by an inverse PCR. Nested PCR produced two or three bands on agarose gels (Fig. 2), which after cloning and sequencing permitted the identification of the human sequences linked to the 5'-LTR. The first detected band corresponds to a sequence in the 2q11.2 locus in chromosome 2, more specifically in a non-coding region of the RNF 149 gene (ring finger protein 149), also called DNA polymerase-transactivated protein 2. The second band identifies a provirus localized in locus 19q13.31 of chromosome 19, in a non-coding region between the PLAUR gene encoding the urokinase plasminogen activator receptor, and the gene encoding the immunity-related GTPase protein. The third band is an unspecific band because it did not contain cellular sequences, but included viral sequences from a region spanning positions 8195–8755 in the env gene. This amplification can be explained by hybridization of the LTR primer in the 3'-LTR and the unspecific hybridization of the gag primer in the env gene. No other integrations sites were obtained at passage 0.

Cells were subcultured for 100 passages, corresponding to approximately 8 months in culture, during which integrations sites were analysed. The same two characteristic bands were always observed (Fig. 2), but also new bands, identifying new integration events, appeared. When the inverse PCR was performed several times on the same DNA sample these new bands were not consistently detected. This result could...
indicate the low representation of these new integration events in the cell population. Table 3 shows the location and characteristics of the integration sites found at passages 0, 54 and 100. These results indicated that, during cell culture, new integration events were taking place in a small fraction of the cells; however, as they did not reach a high representation, they were not fixed in the cell population.

2-LTR circles detection in H61-D cells

Detection of 2-LTR circles has been associated with new events of reverse transcription (Sharkey et al., 2000). 2-LTR detection was performed on the DNA from H61-D cells at passage 0, 54 and 100, using a specific PCR (see Methods).

An expected fragment of 453 bp was obtained in all samples, and its correspondence to the viral 2-LTR junction sequence was confirmed by cloning and sequencing. Fig. 3 shows some of these junction sequences. As expected, not all junction sequences were the canonical sequences produced by LTR ends ligation; most of the clones presented insertions or deletions at the junction site, as in previous works (Julias et al., 2002; Mandal et al., 2006; Randolph & Champoux, 1993; Svarovskaia et al., 2004).

To assess how many cells presented these 2-LTR circles, the sensitivity of the technique was evaluated. By this technique, four copies of the 2-LTR circles in DNA from \(4 \times 10^5\) H9 cells could be detected (data not shown). In the

Table 3. Characteristics of provirus integration sites appearing during H61-D cell culture

<table>
<thead>
<tr>
<th>Passage</th>
<th>Chromosome</th>
<th>Host gene</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2*</td>
<td>RNF149</td>
<td>Ring finger protein 149</td>
</tr>
<tr>
<td>19*</td>
<td>Intergenic region</td>
<td>12333 bp at 5′ side: plaminogen activator, urokinase receptor isoform 1</td>
<td></td>
</tr>
<tr>
<td>36654 bp at 3′ side: immunity-related GTPase family</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>19</td>
<td>PPP5C</td>
<td>Protein phosphatase 5, catalytic subunit</td>
</tr>
<tr>
<td>11</td>
<td>LOC143913</td>
<td>Neural cell adhesion molecule isoform 2</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ACSF3</td>
<td>Aeryl-CoA synthetase family member 3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ANKIB1</td>
<td>Ankyrin repeat and IBR domain containing 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Intergenic region</td>
<td>94663 bp at 5′ side: lipoma HMGIC fusion partner-like 3</td>
<td></td>
</tr>
<tr>
<td>39997 bp at 3′ side: myeloid/lymphoid or mixed-lineage leukaemia 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>NIPBL</td>
<td>Delangin isoform A</td>
</tr>
<tr>
<td>4</td>
<td>ATP8A1</td>
<td>ATPase, aminophospholipid transporter (APLT)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>SMG6</td>
<td>Smg-6 homologue, nonsense mediated mRNA decay factor</td>
<td></td>
</tr>
</tbody>
</table>

*Integration sites detected in cells at all passages.

Fig. 3. 2-LTR circle junction sequences. Sequences obtained by amplification from DNA of H61-D cells at different times. 3′ U5 and 5′ U3 ends of viral DNA are indicated. The canonical ligation of the 2-LTRs are labelled as consensus and shown at the top. Boxes signal dinucleotide duplication at the DNA ends (Brown et al., 1989).
DNA from H61-D cells between 4×10^2 and 4×10^3 cells were required to obtain a positive band (data not shown). This result means that less than 1% of the cells studied have 2-LTR circles, and the viral replication events are taking place only in a small fraction of the persistently infected H61-D cells.

Co-culture facilitates infection of H61-D cells

All these experiments in H61-D cells provided evidence of new infection cycles. These cells did not express, however, the CD4 receptor at the membrane, so it is difficult to explain how new infection events are taking place. In order to study how the virus enters into H61-D cells, we used the recombinant NL4.3–GFP virus that constitutively expresses GFP (see Methods). To facilitate infection, NL4.3–GFP viruses were added to the H61-D cells, in the presence of 8 μg DEAE-dextran ml$^{-1}$ (Platt et al., 2010), at a high m.o.i. of 1 TCID$_{50}$ per cell. As controls, H9 and the persistently infected parental H61 cells were infected with the same virus. No evidence of infection in H61-D cells was obtained, as monitored by cell viability, detection of GFP by fluorescence microscopy (data not shown) and FACS. Fig. 4(a) shows the FACS analysis of H9, H61 and H61-D cells at day 7 post-infection. In the H9 cell line, 21.5% cells were GFP-positive, whereas no positive cells were detected in H61 parental cells nor in H61-D.

Since HIV-1 transmission is more efficient by a cell-to-cell contact than by cell-free virus (Chen et al., 2007; Dimitrov et al., 1993; Sattentau, 2008), to investigate the infection of H61-D cells through cell-to-cell contact a co-culture experiment was designed. In this experiment, H4.3-G cells, an H9 cell line persistently infected with NL4.3–GFP virus (see Methods), was used as a donor and co-cultivated with H61-D cells. Since both H61-D and H4.3-G cells (target and donor cells, respectively) were derived from the H9 cell line, target cells were stained before co-culture with the Celltracker probe Red CMTPX for the differentiation between the two cell lines after co-culture. In this setup, if H61-D cells labelled with CMTPX were infected with the NL4.3–GFP virus, infected cells should become double-positive GFP/CMTPX. As a positive control, uninfected cells were used as target cells, and H61 parental cells were also included in the study. FACS analysis 48 h after co-culture showed the presence of double-positive GFP/CMTPX cells in H9, H61 and H61-D (Fig. 4b). To control for unspecific cell aggregates, donor and target cells were mixed before fixation and submitted to the same FACS analysis; the background of double-positive GFP/CMTPX cells ranged from 1.09 to 1.61% (Fig. S2, available in JGV Online), values that were significantly minor (P-values ≤ 0.05 using a non-parametric Mann–Whitney test) than the ones in the co-cultures.

Since in co-culture experiments percentages of double-positive GFP/CMTPX cells depend on the final rate between target cells and H4.3-G cells, to calculate the mean of target cells that became GFP-positives, we performed the analysis in the gated-positive CMTPX population (Table 4).

To exclude the role of free virus in infection, co-cultures were also performed separating donor and target cells with a transwell insert allowing the diffusion of free virus. In control H9 cells 1.92% of double-positive cells were found. No double-positive cells were found in H61-D or H61 cells, indicating that H61-D cells in co-culture experiments were infected by cell-to-cell contact (Fig. 4c).

In summary, all these experiments indicate that H61-D cells were reinfected with NL4.3–GFP virus through a cell-to-cell contact, and suggest that the new rounds of viral replication and integration detected in H61-D persistently infected cells could be explained by this mechanism.

To explore if infection occurs by the classical fusion entry via CXCR4, we treated the cells with the fusion inhibitor AMD3100 before and during co-culture. The dose of AMD3100 used was 1 μM, a concentration able to completely inhibit acute infection in H9 cells with the NL4.3–GFP virus (data not shown). When co-culture was performed in the presence of AMD3100 with H9 cells, a decrease of double-positive cells was observed (Table 4). However, in co-cultures of H61-D or H61 cells the number of double-positive cells was not significantly different from that obtained in the absence of AMD3100. This result suggests that cell contact other than the classical CXCR4 fusion mechanism could be responsible for infection in co-cultures.

DISCUSSION

In the present study, we provide several lines of evidence for the existence of ongoing replication in an HIV-1 persistently infected cell line. First, viral production was decreased when cells were treated with the reverse transcriptase inhibitor AZT. Second, new integration events appeared in the course of cell culture; and third, 2-LTR circles were detected in the cells.

A decrease in the level of p24 when cells were treated with AZT implies that production of virus is caused not only by transcription from initial integrated provirus, but also by new replication cycles. The same result was obtained with other reverse transcriptase inhibitors like Tenofovir and Emtricitabine (data not shown).

Since H61-D is a cloned cell line derived from a single cell, the two integration sites found in DNA from H61-D cells should be the same as in the original cell. In fact, these two integration sites were always detected in the cell cultures. Additional new sites were identified, however, in further passages, although its detection was sporadic. Since no other integration sites were found at passage 0 (Table 3 and Fig. 2), but found only in subsequent passages, this result showed the existence of new integration events, albeit at a low proportion, in the cell population.
The third line of evidence was the detection of 2-LTR circles in H61-D cells. 2-LTR circles are the result of the joining of the 5' and 3' ends of unintegrated viral DNA. Because these forms of unintegrated DNA have a short half-life, the presence of these circles in HIV-1 patients has been considered a marker of recent replication (Buzón et al., 2010; Sharkey et al., 2000). In latently infected cell lines ACH-2 or OM-10.1, presence of 2-LTR circles has been considered suggestive of reinfection (Besansky et al., 1991). The stability of 2-LTR circles is a controversial issue with results in favour of its rapid degradation (Sharkey et al., 2000) and others in favour of its stability (Butler et al., 2002; Pierson et al., 2002). In H61-D cells, the presence of 2-LTR circles did not originate from the initial cell cloning because after multiple cell passages they should have been diluted to undetectable levels. Moreover, in the analysis of

Fig. 4. FACS analysis of infection experiments. Representative dot plots of (a) H9, H61 and H61-D cells infected with cell-free NL4.3–GFP virus analysed 7 days post-infection. Plots show sideward scatter (SSC) versus GFP fluorescence. (b) Co-culture of H9, H61 and H61-D cells stained with Celltracker probe Red CMTPX, with H4.3-G cells 48 h after co-culture and (c) co-culture separated by a transwell insert of the same donor and target cells as in (b); only target H9, H61 and H61-D cells were collected and submitted to FACS analysis. Plots show GFP versus red fluorescence. Numbers in the quadrants represent the percentage of gated cells in each quadrant. Figure is representative of three different experiments.
the 2-LTR circle junction sequences, we did not find only the canonical sequence but also different variants, supporting the occurrence of new retrotranscription events.

Ongoing viral replication in H61-D cells implies superinfection. This is a difficult process in H61-D because of the lack of the CD4 receptor at the cell membrane. Indeed, the most relevant mechanism of resistance to HIV-1 superinfection ‘in vitro’ is the down-modulation of the CD4 receptor at the cell membrane (reviewed by Nethe et al., 2005). Studies with HIV-1 chronically infected cell lines demonstrated, however, that some of them can be superinfected with heterologous viral strains (Fernández-Larrosa et al., 2006; Iwabu et al., 2006; Kim et al., 1996; Marquina et al., 1997). These data led us to investigate how H61-D cells could be superinfected. For this purpose, we used a heterologous virus (derived from pNL4.3) expressing GFP protein. We demonstrated that infection was not achieved by free-virus, but through cell-to-cell contacts. This finding is consistent with recent reports, suggesting that cell-to-cell contact makes it possible for the spread of virus (Sherer et al., 2009; Sigal et al., 2011). At present, we do not know how the persistent cells contact each other for the transmission of virus. The classical entry of the virus by fusion via CXCR4 is not the mechanism in these persistently infected cells, because treatment of the cells with the fusion inhibitor AMD3100 did not prevent infection; this is in accordance with other works showing that cell-to-cell HIV transmission is co-receptor-independent and non-inhibited by fusion antagonists (Blanco et al., 2004; Chen et al., 2007). Other distinct modes of cell-to-cell HIV transmission have been reported, like filopodial bridges (Sherer et al., 2007) or through nanotubes (Eugenin et al., 2009).

HIV-1 superinfection in patients is well documented (Altfeld et al., 2002; Chohan et al., 2010; Gottlieb et al., 2004; Jost et al., 2002) and it is also supported by the existence of multiple recombinant viruses (Pernas et al., 2006; Thomson et al., 2002). It remains unclear if recombination is caused by the simultaneous cell infection with two viruses, or if an already chronically infected cell is reinfected by another virus.

In the persistently HIV-1-infected cell line H61-D, superinfection with the same viral strain was supported by the evidence of retrotranscription, new proviral integrations and the presence of 2-LTRs. These results agree with other reports showing provirus accumulation in a chronically infected H9 cell line (Ott et al., 1995).

At present, the reservoirs responsible for the residual viraemia in HIV-1-treated patients are not known. Residual viraemia could be explained by the existence of a low-level of ongoing viral replication in an unknown reservoir (Bailey et al., 2006; Buzón et al., 2010; Günthard et al., 1999). In this work, we studied an HIV-1 persistently infected cell line with a low-level of continuous viral replication. It is possible, that some cellular reservoir with similar characteristics as H61-D can exist ‘in vivo’, and H61-D can help as an ‘in vitro’ model of this reservoir. Investigation of the mechanisms of viral replication in HIV-1 persistent infections could help in the design of new therapeutic approaches for the suppression of residual viral production in HIV-1 patients.

METHODS

Plasmids and viruses. The pNL4.3–GFP molecular clone is a modification of HIV-1 pNL4.3-renilla plasmid (García-Pérez et al., 2007), with the GFP gene inserted instead of the nef gene. Plasmid was kindly provided by Drs J. Alcami and J. García-Pérez (Inmunopatología del SIDA, CNM).

The p2LTR was constructed by cloning a PCR fragment containing the junction sequence of 2-LTR circles using the TA cloning kit (Invitrogen). The cloned fragment was obtained from amplification of the HIV-1 persistently infected cell line H61 (Sánchez-Merino et al., 2007) by using a PCR-based strategy to specifically amplify 2-LTR circles (described below).

Virus NL4.3–GFP was obtained by transfection of 293T cells with pNL4.3–GFP molecular clone by using the calcium phosphate precipitation method. Virus used for acute infection of H9 cells (V61) was obtained from the infectious molecular clone 89ES061 (Olivares et al., 1998), from the HIV-1 Spanish isolate S61 (Sánchez-Palomino et al., 1993).

HIV-1 persistently infected cell lines. The H61-D cell line was established by limiting cell dilution from the persistently infected parental H61 cell line (Sánchez-Liménez et al., 2012). H61 was obtained from an acute infection of the human cutaneous T-cell lymphoma highly permissive for HIV-1 replication (H9 cells) with the S61 viral isolate (Sánchez-Palomino et al., 1993), as described in Sanchez-Merino et al. (2007). A cellular stock, named passage 0, was produced by expansion of the initial clone H61-D until 5 × 10^6 cells.

To establish the H4.3-G cell line, 5 × 10^5 lymphocytic H9 cells were infected with the NL4.3–GFP virus at an m.o.i. of 0.1 TCID_{50} per cell. After the acute infection, with CPE in the cell culture, cells were maintained for 4 months. Subculture passages were performed three times a week and progress of the persistent infection was monitored by counting cell viability and measuring p24 protein concentration in

Table 4. Percentage of target CMTPX cells GFP^+^ in coculture experiments

Obtained after analysis in gated-positive CMTPX population. Values represent mean from three determinations ± SD.

<table>
<thead>
<tr>
<th></th>
<th>H61-D</th>
<th>H61</th>
<th>H9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct coculture</td>
<td>3.12 ± 0.65</td>
<td>3.30 ± 2.38</td>
<td>30.59 ± 3.1</td>
</tr>
<tr>
<td>With transwell</td>
<td>0.03 ± 0.05</td>
<td>0.04 ± 0.07</td>
<td>1.2 ± 1.02</td>
</tr>
<tr>
<td>With AMD3100 (1 μM)</td>
<td>2.33 ± 0.69</td>
<td>3.27 ± 2.77</td>
<td>6.3 ± 4.6</td>
</tr>
<tr>
<td>Background*</td>
<td>0.43 ± 0.34</td>
<td>0.62 ± 0.02</td>
<td>0.9 ± 0.32</td>
</tr>
</tbody>
</table>

*Values obtained after mixing CMTPX stained cells with H43G before fix and analysis.
the supernatant. After 4 months, no CPE was observed and cell viability remained above 90%. In addition, over 40% of cells expressed GFP. Cells were maintained in RPMI 1640 medium (Bio-Whittaker), supplemented with 10% FBS, 4 mM glutamine, 100 U penicillin ml\(^{-1}\) and 100 \(\mu\)g streptomycin ml\(^{-1}\) at 37 °C in 5% CO\(_2\) atmosphere. Cellular viability was determined using the trypan blue (Sigma) exclusion method.

Indirect immunofluorescence. Cells were incubated on glass slides previously treated with 50 \(\mu\)g poly-l-lysine (Sigma) ml\(^{-1}\), in PBS for 1 h at 37 °C, and then fixed for 10 min in 4% paraformaldehyde. Fixed cells were washed in PBS and permeabilized with 0.1% Triton X-100 for 5 min. After blocking cells with 20% FBS, they were incubated for 30 min with HIV-1-positive serum diluted 1:50 and DAPI diluted 1:2000 in PBS. After washing three times in PBS, slides were incubated in the dark for 30 min with 1:50 anti-human IgG antibody (Southern Biotechnology Associates, Inc) bound to FITC fluorochrome. Preparations were mounted in Mowiol 40-88 reagent (Sigma) and analysed in a Leica DMRD fluorescent microscope supported by IM1000 software.

Determination of viral markers. Viral expression was monitored by p24 protein production in the cell culture supernatant using the Eclesys HIV antigen detection assay (Roche). Viral titre TCID\(_{50}\) was determined in TZM-bl cells as described in Derdeyn et al. (2000).

Proviral quantification. Quantification of provirus in H61-D cells was performed by quantitative Alu-PCR following a modification of the method previously described by Chun et al. (1997b). Essentially, it consists of a first amplification, using a 5’ primer from human Alu conserved sequences and a 3’ primer from conserved HIV-LTR sequences, followed by a nested PCR to amplify a fragment of the LTR. The following modifications were introduced: a decrease in the number of cycles in the first amplification to 18 cycles, and the use of a real-time PCR for the nested PCR, using LightCycler 480 SYBR Green I Master Mix (Roche). Thermal cycler conditions were 10 min hot-star Tag activation at 95 °C and 33 cycles of amplification. Each amplification cycle was composed of 10 s denaturation at 95 °C, 5 s annealing at 62 °C and 14 s extension and acquisition at 72 °C. A standard curve was obtained using serially diluted DNA from ACH-2 cells that contains one copy of HIV provirus per cell.

AZT treatment. In order to obtain an adequate intracellular level of AZT and its phosphorylated derivative, H9 cells were pre-incubated for 2 h with medium containing AZT at concentrations from 0.01 to 10 \(\mu\)M. Cells were infected with virus recovered in the supernatant of H61-D cells (vH61-D) at an m.o.i. of 0.1 TCID\(_{50}\) per cell. After viral adsorption for 2 h at 37 °C, cells were washed in PBS and resuspended in medium containing the appropriate concentration of AZT. Cultures were maintained for 2 weeks and fresh medium containing the appropriate drug concentration was added every 2 days.

Analysis of the integration sites in H61-D cells. HIV-1 integration sites were determined following the protocol described by Han et al. (2004). Genomic DNA was digested with PstI and ligated with T4 DNA ligase in diluted conditions favouring intramolecular ligation. Circularized DNA was amplified by PCR using outward directed primers located in LTR (5’-GCTGAGATC-CTGGTCTAACAGGACG-3’, complementary to positions 3–29) and gag (5’-GGTCAGCCAAAATTTACCTATAGG-3’, positions 713–738). A second nested PCR was carried out using an internal LTR primer (5’-TAGGCTGACCCGACCATCCAAAAGG-3’, complementary to positions –330 to –308) and an internal gag primer (5’-GGTCGGATCCGACCTAGG-3’, positions 931–958). Primers were numbered according to the sequence of HXB2 virus (Ratner et al., 1985). PCR products were cloned using TA cloning kit (Invitrogen) according to the manufacturer’s protocol and sequenced in an automated ABI Prism 3700. The human genomic sequence at the end of the 5’ LTR of HIV-1 was identified using NCBI BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Detection of 2-LTR circles in H61-D cells. Total DNA from H61-D cells was extracted by a standard phenol/chloroform method. The PCR-based strategy, used to specifically detect 2-LTR circles described in Bukrinsky et al. (1992), consists of a nested PCR using outward directed primers. Primers used for the first PCR were 198RU (5’-GTCGTGTTGTTGACCTAGG-3’, positions 112–131) and 199RD (5’-GAGAGCCATTAGCTGG-TTC-3’, complementary to positions 54–73). Primers for nested PCR were 366U (5’-GAGATCCCTC-AGACCTTTTAG-3’, positions 138–159) and 188D (5’-GCCAC- TCCCCGTGCCC-3’, complementary to positions –46 to –65). Primers are numbered according to the sequence of HXB2 (Ratner et al., 1985). PCR products were cloned using TA cloning kit and 20 positive clones were sequenced. The detection limit of the technique was evaluated by submitting serial dilutions of a plasmid containing the amplified region (p2LTR) in DNA from 4 \(\times\) 10\(^6\) H9 cells. Then, dilutions of DNA from H61-D cells in DNA from H9 cells were submitted to the same PCR amplification and analysed by agarose gel electrophoresis.

Infections. Cells were infected with recombinant NL4.3–GFP virus, obtained from transfection of 293T cells with the pNL4.3–GFP molecular clone. Infections were carried out at an m.o.i. of 1 TCID\(_{50}\) per cell, in the presence of 8 \(\mu\)g DEAE-dextran ml\(^{-1}\) (Platt et al., 2010). Cultures were monitored at different times post-infection for 10 days by measuring cell viability using the trypan blue staining method, examination by fluorescence microscopy and FACS analysis.

Staining of cells and co-culture. Targets cells (H9, H61 or H61-D) were stained with the Celltracker probe Red CMTPX (Invitrogen) at a concentration of 20 \(\mu\)M during 30 min following manufacturer’s instructions. After 24 h, cells were extensively washed with PBS and co-cultures were performed in a 24-well plate by mixing 1 \(\times\) 10\(^5\) of both donor H4.3-G cells and target cells. In Transwell experiments target cells were separated from donor H4.3-G cells by a polycarbonate membrane of 0.4 \(\mu\)m pore size (Costar).

When co-culture was performed in presence of AMD3100, target and donor cells were pre-treated during 1–2 h with AMD3100 at concentration 1 \(\mu\)M before co-culture. Co-cultures were maintained for 48 h with the same concentration of AMD3100 and analysed by FACS.

FACS. Cells (5 \(\times\) 10\(^5\)) were fixed during 15 min at room temperature using 50 \(\mu\)l of the fixation reactive A from the IntraStain Fixation and Permeabilization kit (Dako) and then examined in a FACScalibur flow cytometer (BD Biosciences). A minimum of 10,000 events were assessed for each analysis.

To measure expression of the membrane CD4 receptor and CCR4 co-receptors, cells were fixed as above and then incubated with undiluted PE-conjugated mouse anti-human antibodies anti-CD4 or anti-CCR4. CCR5 co-receptor was detected using FITC-conjugated anti-CCR5. Antibodies used to measure expression of activation markers were: PE-conjugated anti-CD25, PE-conjugated anti-CD69 and FITC-conjugated HLA-DR. Corresponding isotype-matched controls were used. All these antibodies were from BD Pharmingen.

ACKNOWLEDGEMENTS

Javier García Pérez and José Alcamí are thanked for the pNL4.3–GFP plasmid and reagents. Esteban Domingo and Maria Pernas are acknowledged for helpful suggestions and the critical reading of the

http://vir.sgmjournals.org
manuscript. Work in CNM is supported by grant SAF 2007-61036 and 2010-17226 from MICINN Spain, by grants 36558/06, 36641/07, 36779/08, 360766/09 from FIPSE Spain, and in part by the RETIC de Investigación en SIDA (Red de grupos 173) of the Fondo de Investigaciones Sanitarias (FIS).

REFERENCES

