Cryo-electron microscopy reconstructions of triatoma virus particles: a clue to unravel genome delivery and capsid disassembly

J. Agirre,1,2 G. Goret,3 M. LeGoff,3 R. Sánchez-Eugenia,1 G. A. Martí,4 J. Navaza,3 D. M. A. Guérin1,2 and E. Neumann3

Correspondence
E. Neumann emmanuelle.neumann@ibs.fr
D.M.A. Guérin diego.guerin@ehu.es

Received 2 October 2012
Accepted 27 December 2012

1Unidad de Biofísica (CSIC, UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
2Fundación Biofísica Bizkaia, B’ Sarriena S/N, 48940 Leioa, Bizkaia, Spain
3IBS, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 CNRS-CEA-UJF, 41 rue Jules Horowitz, F-38027 Grenoble, France
4Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), 2#584 (1900) La Plata, Argentina

Triatoma virus (TrV) is a member of the insect virus family Dicistroviridae and consists of a small, non-enveloped capsid that encloses its positive-sense ssRNA genome. Using cryo-transmission electron microscopy and three-dimensional reconstruction techniques combined with fitting of the available crystallographic models, this study analysed the capsids corresponding to mature and several RNA-empty TrV particles. After genome release, the resulting reconstruction of the empty capsids displayed no prominent conformational changes with respect to the full virion capsid. The results showed that RNA delivery led to empty capsids with an apparent overall intact protein shell and suggested that, in a subsequent step, empty capsids disassemble into small symmetrical particles. Contrary to what is observed upon genome release in mammalian picornaviruses, the empty TrV capsid maintained a protein shell thickness and size identical to that in full virions.

INTRODUCTION

Triatoma virus (TrV), a positive-sense ssRNA virus with a small spherical non-enveloped capsid of ~300 Å in diameter (Muscio et al., 1988; Czibener et al., 2000), belongs to the genus Cripavirus (type species: cricket paralysis virus) within the family Dicistroviridae (Mayo, 2002). This virus infects several species of triatomines (Reduviidae: Hemiptera), the haematophagous insect vectors (kissing bugs) of Chagas disease (Pan American Health Organization, 2006). A solution of TrV purified using a sucrose gradient contains predominantly full virion particles (capsids containing the genome) and empty, RNA-free spherical particles (Estrozi et al., 2008). A detailed analysis of full and empty TrV particles revealed that the TrV capsids of full particles are formed by four major viral proteins, VP1, VP2, VP3 and VP4, with respective molecular masses of 29.7, 28.4, 31.8 and 5.5 kDa, and a minor polypeptide, VP0, of 37.3 kDa. In contrast, the naturally produced empty capsids contain almost the same proteins as full particles (with the exception of VP4), but at least 30% of their content corresponds to seven different polypeptides that result from misprocessing of the structural protein precursor P1. These peptides assemble into spherical particles that probably lose the capacity to enclose the genome (Agirre et al., 2011). In addition, purified TrV also contains smaller symmetrical lip-shaped particles (LSPs; Estrozi et al., 2008). So far, the origin of these small particles has not been identified, although it has been postulated that they are products of disassembled TrV capsids (Agirre et al., 2011). Here, we demonstrated that TrV virions are stable under very acidic conditions. We also showed that a fresh sample of pure full TrV particles evolves, upon storage in neutral pH and under both standard ionic strength and temperature conditions, towards a solution composed of virions, empty particles (EPs) and LSPs. In addition, heating a sample of full virions to 50 °C induced RNA externalization and the formation of empty TrV capsids. This effect has been studied in detail for the picornaviruses poliovirus (PV; Bostina et al., 2011) and human rhinovirus 2 (HRV2; Hewat et al., 2002), and this experimental approach was considered a good model to emulate the structural changes that would permit the genome to exit the capsid. The crystallographic structure of the empty HRV2 capsid, which has been determined recently at 3.0 Å resolution (Garriga et al., 2012), validated a previous cryo-transmission electron microscopy (TEM) study (Hewat et al., 2002) by displaying in great detail the main features described...
formerly for this virus. These characteristics are as follows: (i) their structures display a mean expansion of ~4 %, (ii) there is a reduction in the thickness of the protein shell, and (iii) there are structural rearrangements of the open channels of the proteins traversing the capsid. In this work, we have reported cryo-TEM reconstructions of full particles, natural EPs (n-empty), EPs produced experimentally by heating virions (e-empty) and EPs that appeared after storing virions for a few days (s-empty). A numerical analysis of the different cryo-TEM reconstructions enabled us to score the similarities between the different particles. Docking the atomic model of the TrV capsid proteins into the cryo-TEM reconstructions allowed us to estimate that no major changes had occurred to the capsid following genome release. Our observations indicated that RNA release in TrV produces an empty shell very similar to the mature virion capsid. In addition, LSPs resulting from the disassembly of the capsid were clearly associated with genome release. In contrast to similar studies, none of the three salient characteristics of the empty picornavirus models summarized above were observed in the TrV empty-capsid reconstructions.

RESULTS

Evolution of the population of TrV particles

TrV virions were separated from empty and other small particles (Fig. 1b) using the purification protocol described by Agirre et al. (2011). Following storage either at room (18 °C) or at a refrigerated (4 °C) temperature, a sample containing ~90 % virions (Fig. 1b) gave rise to a heterogeneous population containing both empty particles and LSPs (Fig. 1c). These LSPs could be concentrated with respect to the empty capsid and the virions. When this sample was visualized by TEM (Fig. 2a) using a negative-staining procedure, the LSPs showed a highly oriented distribution, offering almost a single view to the observer (Fig. 2a). SDS-PAGE analysis revealed that the LSPs were composed of the three main VPs (Fig. 2b). The two-dimensional averaging of these particles displayed two symmetrical domes that were related by a twofold axis with a size of ~13.5–15.0 nm long and 5.0–10.0 nm wide (Fig. 2c, 2d). Each of these two domes could be modelled by a pentamer of protomers or penton (5 × VP1–3; Fig. 2d, right), which are found in each of the fivefold vertices in the TrV particle. Whilst LSPs can be obtained as a disassembly product from virions after storing them for a period of time, they were not observed as a by-product of e-empty particles. After incubation, we also observed a minor disassembly product in addition to the remaining full particles, EPs and LSPs. We were unable to characterize this population.

Cryo-TEM of full TrV particles

TrV virions frozen immediately after the last purification step appeared as smooth spheres of ~300 Å in diameter (Fig. 3). A three-dimensional (3D) reconstruction of these particles was obtained at 15.0 Å resolution (Figs 3 and 4). This reconstruction displayed a more detailed view of the features already observed in our previous negatively stained reconstruction obtained at 30 Å resolution (Estrozi et al., 2008). The isosurface representation of TrV virions displayed five protuberances around the fivefold axes, contained a triangular plateau centred on the threefold axes (Fig. 3) and lacked the typical ‘canyon’ found in most picornaviruses (Rossmann et al., 1987; Hewat et al., 2000). In addition, we observed two features that were not recognizable in our former reconstruction, namely a hole traversing the capsid at the fivefold axes and a density at the capsid interior attributable to the RNA content (Fig. 3).

Cryo-TEM of TrV EPs

Three different EP reconstructions were obtained. The first, obtained at 19 Å resolution, corresponded to naturally occurring EPs purified directly from the insects (n-empty, Fig. 3) as described by Agirre et al. (2011). The second type of empty capsid, obtained by heating TrV virions (e-empty,
Fig. 3) was reconstructed at 22 Å resolution. The third kind of empty particle (s-empty, Fig. 3), which appears following storage as described above, was reconstructed at 17 Å resolution. All three types of EP appeared as hollow spheres when observed under the microscope and were almost indistinguishable from each other (Fig. 3). The isosurface representations of the cryo-TEM reconstruction of n-empty particles displayed the same external features as those observed in virions (Fig. 3). The outer region of the e-empty reconstruction displayed predominantly identical features to those obtained for the s-empty particles (Fig. 3). The major difference between the n-empty and the two other types of EP reconstructions was a protruding extra density located at their twofold axes on the outer surface of both e- and s-empty particles (annotated as black ovals in Fig. 3). As in the n-empty particle, the full-particle isosurface did not show any outward density at the twofold symmetry points.

Quantitative particle comparison

The averaged densities from the three EP reconstructions showed that the thickness of the protein shells was ~34 Å (Fig. 5). This value coincided with the thickness of the TrV virion capsid reconstruction (Fig. 5, red line). To employ a global and quantitative criterion for pairwise comparison of the reconstructions, we computed two parameters: one was the correlation coefficient (CC), and the second was equivalent to the crystallographic R-factor (R). The similarity between each pair of the four reconstructions can be appreciated by comparing these values (Table S1, available in JGV Online). This analysis clearly showed that the virion reconstruction was most similar (high CC and low R) to the n-empty reconstruction (CC=0.93 and R=32.1). The comparison of the three types of EP reconstructions indicated that s-empty was more similar to e-empty (CC=0.96 and R=26.3) than to n-empty (CC=0.91 and R=35.6). These results were obtained considering the reconstructions as bulky objects and were consistent with the external appearance of the particles (Fig. 3).

Modelling the full and empty TrV capsids

To estimate the structural changes acting on the capsid proteins following genome release, we used the 'tectonic model' approach, which consists of fitting atomic models to the cryo-TEM reconstructions (Belnap et al., 2000). The TrV protomer (VP1–3) was docked inside the reconstructed cryo-TEM map of the full capsid with a final CC of 0.74 and an R factor of 53.6 % (Fig. S1, panels b1 and c1). The root-mean-square deviation (RMSD) from the crystallographic position to the docked position was estimated to be 1.95 Å (Table S2). We then proceeded to
Fig. 3. Comparison of the four reconstructions. First column: electron micrographs of frozen hydrated TrV obtained from field-emission gun (full and s-empty) and Philips CM200 (n- and e-empty) microscopes operating at 200 kV. In the case of the s-empty particles, the micrograph shows a mixture of particles resulting from spontaneous RNA release and capsid disassembly. These different particles appeared in a sample that was originally composed of TrV virions, after 1 week of storage at 4 °C. In this micrograph, we can observe a major content of s-empty particles (some of them open), LSPs and a few unidentified small particles. Second and third columns: views along the five- and twofold axes of the four reconstructions, filtered to 22 Å, normalized and contoured at 1.1ρ. Whilst the full and n-empty maps displayed a depression on the twofold axes, e- and s-empty particles showed a protuberance. Fourth column: close-up views along a twofold axis of the reconstructions (unfiltered), contoured at higher levels (full, 1.4σ; n-empty, 2.1σ; e-empty, 2.3σ; s-empty, 2.0σ). The protuberances of the e- and s-empty particles are clearly depicted. In the case of the e-empty particle, the hole in the fivefold axis is visible, whereas no other holes appeared in the surroundings. Fifth and sixth columns: central sections of the filtered and normalized reconstructions and of difference maps calculated by subtracting the density of each reconstruction from the density of the full particle (white, positive values; black, negative values). The black ovals indicate the density at the twofold axis.

Fig. 4. Fourier shell correlation of the four reconstructions. Estimation of the resolutions by Fourier shell correlation of the full (red), n-empty (green), e-empty (blue) and s-empty (purple) 3D TrV reconstructions from half datasets. A correlation value of 0.5 was used.
make a best rigid body fit for each viral protein (Fig. S1, panels a2 and b2). The atomic models of each viral protein (in their crystallographic positions) were docked with a final CC of 0.75 and an R factor of 51.2 % (Fig. S1, panels c2 and d2). Calculating the RMSD values from the initial positions to the docked positions for each viral protein (Fig. 6), we obtained a mean value (2.43 Å) that was worse than that for the protomer (RMSD= 3.7, 2.63 and 1.15 Å for VP1, -2 and -3, respectively; Table S2). For the n-empty particles, an identical fitting approach, as described above for the virions, was performed with the cryo-TEM map of the n-empty capsid. The atomic model was docked with a final CC of 0.87 and an R factor of 48.1 %. We then calculated the deviation between the crystallographic and the docked positions, and the RMSD value for the entire molecule was estimated to be 3.32 Å (Table S2). However, we calculated the deviation between the crystallographic and the docked positions, and the RMSD value for the entire molecule was estimated to be 3.77 Å (Table S2). We again performed a fit for each viral protein as described previously. We obtained a final CC of 0.86 and an R factor of 48.9 %. No major movements were detected for VP1 and VP3 (RMSD= 2.41 and 3.26 Å, respectively; Table S2 and Fig. 6), whereas a slight movement of VP2 was observed (RMSD= 6.55 Å; Table S2 and Fig. 6). We then proceeded in an analogous manner for the e-empty reconstruction. The atomic model was docked with a final CC of 0.81 and an R factor of 54.2 %. We then calculated the deviation between the crystallographic and the docked positions, and the RMSD value for the entire molecule was estimated to be 3.77 Å (Table S2). We again performed a fit for each viral protein, obtaining a final CC of 0.86 and an R factor of 48.9 %. Whereas no significant movement was detected for VP1 and VP3 (RMSD= 2.94 and 3.12 Å, respectively; Table S2 and Fig. 6), an outward movement of VP2 was observed (RMSD= 11.35 Å, Table S2 and Fig. 6). This movement mainly corresponded to a solid rotation and may account for the density redistribution around the capsid twofold axis (black oval in Fig. 3). This fitting is depicted in more detail in Fig. S2.

We did not apply the fitting calculations to the s-empty particles.

Stability of the TrV virions at neutral and low pH

Within the pH range 7.5–2.0, dynamic light scattering experiments indicated that the hydrodynamic diameter of TrV (full particles) remained essentially unaltered (Fig. 7, values indicated on the upper curve). In addition, within this pH range, the maximum fluorescence emission did not change appreciably (Fig. 7, middle and lower curves), indicating that none of the buried tryptophans became exposed to the solvent (the fluorescent emission of TrV virions denatured in 4 M guanidinium thiocyanate showed a maximum at 358 nm; Fig. 7). The increase in scattered light at pH values below 4 was the consequence of particle aggregation, an observation that was confirmed by electron microscopy imaging (data not shown). The large size of the aggregates at very acidic pH values prevented the measurement of particle size.

DISCUSSION

We have already referred to some studies on two picornaviruses comparing the structure of the infective virions with their empty particles. Whilst not intending to present a complete list of related works, other noteworthy studies on non-enveloped viruses include adeno-associated virus type 2 (Kronenberg et al., 2005), foot-and-mouth-disease virus (Curry et al., 1997), minute virus of mice (Agbandje-McKenna et al., 1998), canine parvovirus (Wu & Rossmann, 1993), physalis mottle virus (Krishna et al., 2001) and the plant viruses turnip yellow mosaic virus (van Roon et al., 2004) and bean pod mottle virus (Lin et al., 2003). Our results indicated that the TrV virions were stable from very acidic to neutral pH conditions, and this observation is consistent with the crystallographic studies.
for which crystals obtained at pH 5.5 allowed the determination of the atomic structure of TrV (Rozas-Dennis et al., 2004; Estrozi et al., 2008). TrV infects the midgut of triatomines (Muscio et al., 1987), and along the natural route of infection, this virus encounters a range of different pHs. The pH in the stomach of the insects can vary between 5.2 and 7.3, and in the small intestine, it ranges between 6.1 and 6.8 (Kollien et al., 2001). Therefore, the acidic stability of TrV suggests that RNA release is not induced in the acidic pH-dependent manner that some picornaviruses employ. Our study comprised 3D cryo-TEM reconstruction of virions and n-empty particles of TrV at ~15 and ~19 Å resolution, respectively (Fig. 3). In contrast to our previous study (Estrozi et al., 2008), we succeeded in selecting images from homogeneous samples using an effective purification procedure (Agirre et al., 2011) and by obtaining the images directly after completing the purification, which avoided spontaneous in vitro disassembly. We also reported the in vitro spontaneous RNA release from TrV virions. Because the resulting particle products from this spontaneous disassembly contained a protein composition identical to that of the virions, we could exclude proteolysis as the cause of genome externalization and capsid disruption. We were then able to speculate that particle destabilization may occur as a consequence of a diffusion process and/or an imbalance of the forces that maintain the encapsulated genome.

Comparison between EPs

An important feature of all three EP reconstructions was that they accounted for a protein shell with equivalent thickness (Fig. 5). Due to the different protein composition of full and n-empty particles (Agirre et al., 2011), n-empty particles probably never enclose the genome, thus representing a dead-end product of the assembly process. Therefore, only e-empty and s-empty structures are representative of the state of the capsid after RNA release. Reconstruction of the e-empty capsid allowed us to model
the structural changes that resulted in the TrV protein capsid following genome release. Although subtle, an interesting feature present in the reconstruction was the protuberance at the twofold axis particle surface (black ovals and negative peaks in the difference maps in Fig. 3). This extra density could be modelled with a solid movement of VP2 towards the capsid exterior (Fig. 6 and S2).

Comparison of full and e-empty capsids

The e-empty protein shell was successfully modelled using the 'tectonic model' approach (Fig. 6). The full and e-empty capsid reconstructions of TrV displayed one major difference, which was the density at the twofold axis already described. As this protuberance was also absent in the n-empty particles, it showed a trace of the genome externalization. Being at the frontier between two VP2 proteins right at the twofold axis, it may be assigned as the putative site for RNA egress. This hypothesis would be in agreement with recent studies on PV and HRV2 picornaviruses in which RNA externalization was shown to occur around the twofold axis (Bostina et al., 2011; Garriga et al., 2012). A second difference between the full and e-empty particle reconstructions was the narrowing of the hole located at the fivefold axis (Fig. 3). This narrowing could be attributed to slight rearrangements during the accommodation of the capsid proteins VP1 and VP3, which surround the fivefold axis. The mean densities of the reconstructions (Figs 5 and S3) showed that both particles had identical outer diameters. This identical size indicates that the capsid does not expand upon RNA release. This invariance of the protein shell contrasts with what has been described previously for HRV2 (Hewat et al., 2002) and PV (Belnap et al., 2000) EP reconstructions. In these two cases, capsid thinning was explained by the externalization of proteins located at the capsid interior that were previously in contact with the genome. This fact has been documented thoroughly for several members of the family Picornaviridae (Fricks & Hogle, 1990; Lewis et al., 1998).

With regard to the TrV e-empty capsids, such a process would not occur. Finally, aside from the subtle differences mentioned previously, the high similarity between the capsid of the full particles and that of the particles that released their RNA content indicated that, following genome release, no major rearrangements of the coat proteins occurred.

TrV capsid disassembly upon RNA release

LSPs of approximately 15 nm in length have been observed in previous TrV preparations (Estrozi et al., 2008; Agirre et al., 2011). So far, the origin of these small particles has been elusive. These particles were also obtained in the present study by storing a sample of TrV virions. The identification of their protein content after purification in a sucrose gradient (Fig. 2a) allowed us to confirm that these small particles are portions of the viral shell (Fig. 2b) and also that they constitute end products of capsid disassembly. A plausible explanation for the appearance of these particles is that they may be integrated by two facing pentons (Fig. 2d). It may seem unfavourable for TrV capsid assembly to

![Fig. 7. Combined results from intrinsic fluorescence, static and dynamic light scattering. The absence of fluctuations in the maximum of the fluorescence emission (middle curve) indicates that there are no conformational changes in the environment of the tryptophan residues present in the TrV structure. The increase in the scattered light below pH 4 (top curve) is due to an aggregation process. There is also a slow but steady decrease in the fluorescence intensity (bottom curve), which may indicate that this aggregation process is continuous and incremental.](image)
have pentons with a tendency to associate in dimers. A possible explanation to prevent this type of dimerization can be found in the role that VP4 may play in the processes of capsid building and dissociation. During assembly, VP4 is still part of the uncleaved VP0 precursor and would favour the interaction of the capsid intermediates (oligomers of protomers) with the genome, precluding the face-to-face dimerization of pentons. Upon capsid maturation, the excision of VP4 from VP0 occurs (Agirre et al., 2011). The detachment of VP4 from the major capsid proteins upon genome release would enable the pentons to adopt the conformation of LSPs. As LSPs and isolated pentons are also observed in a fresh purification (Estrozi et al., 2008), this indicates that both types of particle (i.e. pentons as capsid precursors and dimers of pentons as capsid disassembly products) co-exist in vivo. The structure and characteristics of these particles are subject to a more detailed study in a forthcoming article.

Conclusions

The experimental observations reported in this work show that RNA delivery in TrV produces empty capsids with features that differ from the characteristics observed in HRV2 (Hewat et al., 2002; Garriga et al., 2012) and PV (Belnap et al., 2000). In Table 1, we have summarized the main features associated with RNA release in TrV and these two picornaviruses. The insect virus differs from the other viruses in that, upon genome release, the capsid does not change its outer diameter, whereas a 4% global expansion is observed in both HRV2 and PV EPs. Moreover, in the two picornaviruses, the three major capsid proteins undergo substantial conformational changes that produce holes through which the genome can escape. Because there is no major protein movement after RNA delivery in TrV and pieces of the capsid appear as small particles upon genome release, we postulate a partial capsid cracking and/or dismantling mechanism associated with the RNA externalization process.

METHODS

Preparation and purification of TrV. Mature TrV and n-empty particles were purified from dry faces fixed to paper fans of infected triatomines (colonies of Triatoma infestans), as described by Agirre et al. (2011).

Preparation of TrV EPs and LSP composition. E-empty particles were prepared as described by Hewat et al. (2002). A suspension of TrV virions was heated to 55 °C for 30 min immediately prior to the preparation of the cryo-TEM specimens. S-empty particles were obtained after the spontaneous RNA release that occurs when samples of TrV virions are stored under standard conditions (neutral pH, low ionic strength and temperatures of 4 and 18 °C). The evolution of full TrV particles over time was examined by negative-staining electron microscopy on a CM12 microscope (FEI) operating at 120 kV. Samples were stained with 1% (w/v) ammonium molybdate and screened for the quality, concentration and nature of the viral particle population. Statistics were computed on several collected micrographs and performed over ~500 particles selected on different micrographs. For instance, for a typical sample containing 90±5% virions and 10±5% EPs, after 1 week of storage, the proportion became 70±5% virions, 20±5% EPs and 10±5% LSPs, with a minor population of <5% of very small non-identified particles. LSPs were isolated in a sucrose gradient, and their protein composition was analysed by SDS-PAGE.

Negative-stained image analysis and modelling of LSPs. LSPs were examined by negative-staining electron microscopy as described above. Micrographs were recorded and digitized on a Photonscan TD scanner (Z/I Imaging) at a step size of 14 Å. A total of 5800 particles were boxed from four different micrographs using the x3d program (Conway & Steven, 1999). Using the SPIDER software (Frank et al., 1996), we performed classification by hierarchical clustering and obtained 17 classes by image averaging, with four significant ones. Classes showing side views represented 98% of the particles on our images, preventing us from performing a 3D reconstruction.

Cryo-TEM images and image analysis. Specimens of interest were studied by cryo-TEM according to standard methods with a JEOL 2010F field-emission gun and on a CM200 microscope (FEI), both operating at 200 kV. Images were obtained under low electron dose conditions (<10 e Å−2) and recorded at a nominal magnification of 40 000 x at different defocus settings ranging from −1.2 to −4.0 μm. Micrographs were recorded on Kodak SO-163 film and developed for 12 min in full-strength Kodak D19. Negatives were screened by optical diffraction to reject drifted or astigmatic images, and selected images were digitized on a Photonscan TD scanner (Z/I Imaging) at a step size of 7 μm, corresponding to 1.75 Å per pixel at the sample. To perform the reconstruction, using the x3d program (Conway & Steven, 1999), approximately 5000, 2700, 2200 and 2800 particles were boxed from 25 and 15 (×3) different micrographs for full and n-, e- and s-empty TrV samples, respectively. Final reconstructions were obtained with the best 1716, 695, 573 and 1434 particles (after 30 refinement cycles) for full and n-, e- and s-empty TrV 3D maps, respectively. The TrV map obtained in a previous study (Estrozi et al., 2008) was used as a starting model for the analyses. All subsequent refinements of particle origin and orientation were performed using the model-based polar Fourier transform programs (Baker & Cheng, 1996). The program CTFFIX (Conway & Steven, 1999) was used to correct the contrast transfer function effects and for the final Fourier–Bessel reconstruction. The resolutions were estimated by Fourier shell correlation of the reconstructions (Fig. 4) from half datasets using the criterion of 0.5 correlation (van Heel & Schatz, 2005). The isosurface representations of the reconstructed densities were rendered using RobEM (Fig. 3) and Amira (Mercury Computer Systems) (Fig. S3).

Comparison of cryo-TEM reconstructions. The cryo-TEM reconstructions were computed on orthogonal 3D grids with a spacing of 1.75 Å, and the corresponding average radial densities, each sampled at 2 Å, were computed by taking the mean value of the density within shells that were 5 Å wide. The limits of the protein shell were assigned to the points where the average radial density reaches the value corresponding to the exterior of the particle (frozen solvent). The distance between these two points represented a capsid thickness of ~34 Å, which was identical for all reconstructions. The correlation coefficients and crystallographic R factors used for the comparison between cryo-TEM particle reconstructions and the crystallographic TrV atomic model [Protein Data Bank (PDB) 3NAP] were calculated with the URO program (Navaza et al., 2002) employing the Fourier coefficients within the 200–20 Å resolution range. For these calculations, the densities inside a sphere of radius 120 Å were set to zero in order to restrict the analysis to the region corresponding to the protein shell. All reconstructions were normalized, filtered to 22 Å resolution and subtracted for display in Fig. 3. Operations with maps were computed with MAPMAN (Kleywegt & Jones, 1996) and the CCP4 suite of programs (Winn et al., 2011).
Table 1. Snapshots of RNA release in small non-enveloped icosahedral viruses

The current models of RNA release are based on the comparison of full (virions) and EPs of HRV2 (Hewat et al., 2002; Garriga et al., 2012), and empty and full (160S) PV particles (Lewis et al., 1998; Levy et al., 2010; Bostina et al., 2011). This table summarizes the main characteristics associated with PV and HRV2 genome release together with the results reported here for TrV. EPs were prepared by heating purified virions as follows: TrV and HRV2, above 50 °C for 30 min, and PV at 50 °C for 3 min and 55 °C for 10 min for the 135S and 80S particles, respectively. LDR, low-density lipoprotein receptor; PVR, PV receptor; CDE, clathrin-dependent endocytosis; PFR, pocket factor release.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Capsid stability</th>
<th>Capsid modifications upon RNA release</th>
<th>RNA capsid exit</th>
<th>RNA translocation</th>
<th>Final structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRV21,2</td>
<td>Unstable at pH <5.64</td>
<td>Low pH induces capsid expansion and PFR Substantial reorganization of the interpentamer interactions induces a capsid expansion and a shift The VP1 N terminus remains disordered in the capsid interior, whereas VP4 is extruded to the exterior with the RNA</td>
<td>Through an opening at the twofold axis (~10 Å wide and 30 Å long)</td>
<td>Through a membrane channel composed of VP4</td>
<td>Two types of 80S empty shells containing a variable amount of residual RNA</td>
</tr>
<tr>
<td>PV7,8,9</td>
<td>Unstable upon cell attachment Stable at low pH10 Breathing11</td>
<td>PVR attachment triggers the conversion of 160S into 135S particles The 135S intermediate externalizes the N terminus of VP1 and myrVP4RNA release produces 80S particles, which are slightly expanded with respect to the 160S particles VP1–3 proteins are shifted out of the capsid centre and rotated, resulting in significant alterations in the intersubunit contacts; these movements produce gaps approximately 30 Å wide between subunits The VP1 N-termini exit the capsid through pores that open at the base of the canyons</td>
<td>Through an opening at the base of the canyon and near a twofold axis</td>
<td>The insertion of myrVP4 and the N terminus of VP1 results in the formation of channels that facilitate the RNA translocation</td>
<td>Three types of 80S empty shells: 80S.e (partially filled with RNA), 80SJ and 'particles caught in the act' with RNA on both the inside and outside</td>
</tr>
<tr>
<td>TrV</td>
<td>Stable at pH 4.0–7.5 No breathing observed</td>
<td>Empty capsids have identical size and thickness to full RNA particles Capsid proteins VP1 and VP3 do not appreciably change their position upon RNA release The VP2 C terminus moves to the capsid exterior at the twofold axis. VP4 is disordered and exits the capsid with the RNA</td>
<td>Through a breach formed at the front of two symmetry-related protomers</td>
<td>Unknown (VP4 is disordered and is not myristoylated12)</td>
<td>Empty capsids and small symmetrical particles (two facing pentons ~150 Å long and ~100 Å wide)</td>
</tr>
</tbody>
</table>

References: 1Hewat et al. (2002); 2Garriga et al. (2012); 3Gruenberger et al. (1991); 4Prchla et al. (1994); 5Lewis et al. (1998); 6Hewat & Blaas (2004); 7Belnap et al. (2000); 8Levy et al. (2010); 9Bostina et al. (2011); 10Pérez & Carrasco (1993); 11Li et al. (1994); 12PDB 3NAP; Agirre et al. (2011).

Fitting the TrV X-ray structures of VP1, -2 and -3 into the cryo-TEM reconstructed densities. To implement the ‘tectonic model’ (Belnap et al., 2000), and as described in Results, the X-ray structures of the protomer VP1–3 and of each VP were positioned onto the cryo-electron microscope reconstructed densities using VEDA (http://mem.ibs.fr/VEDA). This software allowed the application of icosahedral symmetry to generate an entire capsid from the individually fitted protein structures, thus allowing us to discard significant clashes between neighbouring protomers. Several fitting parameters were set up, such as the resolution (100–20 Å for low- and high-resolution thresholds), the number of refinement cycles (one and three for the entire protomer VP1–3 and each individual VP, respectively) and the number of iterations.

Capsid stability under neutral and acidic pH conditions. To detect possible variations in the diameter of virions as a consequence of pH changes, we performed particle size measurements using dynamic light scattering. We also performed protein fluorescence spectroscopy and static light scattering. Due to the presence of seven tryptophans in each protomer, all isolated from the solvent, it was possible to detect the disassembly of the capsid proteins if the scattered light decreased or a shift in the maximum of fluorescence.
emission was produced. Fluorescence spectra were obtained using a Jobin Yvon SPEX Fluoromax-3 fluorometer with an excitation wavelength of 295 nm and an emission range of 305–420 nm. Three independent measurements were interpolated using the GRAMS software. Static light scattering data were obtained with the same equipment but with excitation at 320 nm and collection of the scattering data in the range 315–325 nm. For each sample, the mean scattering intensity was calculated. Samples were prepared in 100 mM of the corresponding buffer (Tris for pH 7.0–7.5; citric acid for pH 2.0–6.5) and were incubated for 24 h before measurement. The concentration of TrV in each condition was 0.1 mg ml⁻¹, determined using a bicinchoninic acid assay (Pierce).

Image presentation. Figures were generated with VEDA (http://mem.ibs.fr/VEDA) and PyMOL (DeLano, 2002).

ACKNOWLEDGEMENTS

We thank Guy Schoen and Elizabeth Hewat for their precious advice and comments. J.A. was awarded a short-term fellowship from EMBO (ASTF 309-2008) for a 3-month stay under the supervision of E. N. at the IBS, Grenoble. R. S.-E. acknowledges a pre-doctoral grant from the Basque Government (BG). G. A. M. is partially supported by ANPCyT (PICT no. 32618/05), Argentina. J. N. is grateful for an Ikerbasque fellowship to visit D. M. A. G.’s laboratory during 2011–2012. D. M. A. G. is grateful for the support of Bizkaia-Xedek, UPV/EHU (IT-461-07), the BG (AE-2012-1-44 and MV-2012-1-41), CYTED (209RT0364) and MICINN (BFU2007-62062). D. M. A. G. is grateful for the support of Bizkaia:Xede, UPV/EHU (IT-461-07), the BG (AE-2012-1-44 and MV-2012-1-41), CYTED (209RT0364) and MICINN (BFU2007-62062). D. M. A. G. is visiting professor at the Basque Country University (UPV/EHU).

REFERENCES

