Hepatitis E virus replication involves alternating negative- and positive-sense RNA synthesis

Satya Pavan Kumar Varma,1 Amit Kumar,1 Neeraj Kapur,1 Hemlata Durgapal,1 Subrat Kumar Acharya2 and Subrat Kumar Panda1

1Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
2Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India

Hepatitis E virus (HEV) is the major cause of epidemic hepatitis and many outbreaks of sporadic hepatitis. The virus responsible has a single-stranded, positive-sense RNA. Its replication and the regulatory process involved therein are poorly understood. Much of the HEV biology studied has been done by using full-length capped RNA transcripts (replicons) and transient transfections in cell cultures. We investigated replicon replication using negative-sense strand-specific molecular beacons in live cell imaging, and quantifying intracellular viral RNA using strand-specific real-time PCR every 2 h until 24 h post-transfection. A graph of the copy numbers of both positive- and negative-sense RNA at the different time points was plotted. This showed a temporal separation and alternating cycles of negative- and positive-sense RNA formation. As a control, a dysfunctional replicase mutant (GDD→GAA) was used, which showed no increase in copy number. The live cell imaging corroborated the quantitative data, in that the maximal amount of negative-sense RNA was observed at 8 h post-transfection. The real-time-PCR copy-number analysis of the subgenome showed the presence of a single subgenomic RNA. Using fluorescent protein genes mCherry and EGFP fused in-frame to pORF2 and ORF3 in separate constructs and immunofluorescence, we showed the formation of both proteins pORF2 and pORF3 from a single subgenomic RNA. Our study demonstrated cyclical bursts of virus replication and the role of subgenomic RNA in the HEV life cycle.

INTRODUCTION

Hepatitis E virus (HEV) is an enterically transmitted agent of acute viral hepatitis (Vishwanathan, 1957; Wong et al., 1980; Balayan et al., 1983). It is a 27–34 nm non-enveloped virion that has a single-stranded positive-sense, capped and polyadenylated RNA of approximately 7.2 kb in length (Reyes et al., 1990, 1993; Tam et al., 1991; Aye et al., 1993; Purdy et al., 1993; Nanda et al., 1994; Kabrane-Lazizi et al., 1999). HEV was placed in a separate genus, Hepevirus. With four recognized genotypes it is a major cause of sporadic as well as epidemic hepatitis globally (Emerson et al., 2004a).

The genome is organized into three ORFs. The 27–35 nt long 5′ non-coding region (NCR) is followed by ORF1, which encodes the non-structural polyprotein (Ansari et al., 2000). Computer-assisted analyses of HEV ORF1 suggested the presence of methyltransferase-, putative cysteine-protease-, RNA helicase- and RNA-dependent RNA polymerase (RdRp)-homology domains (Koonin et al., 1992). The functional activities of pRdRp (Agrawal et al., 2001), helicase (Karpe & Lole, 2010) and methyltransferase (Magden et al., 2001) have been verified experimentally. ORF2 encodes the major viral capsid protein (pORF2), which contains a signal peptide and potential glycosylation, dimerization and host interacting sites (Jameel et al., 1996; Li et al., 2009; Guu et al., 2009; Yamashita et al., 2009). It has been found that ORF3 overlaps with ORF2, encodes a small 114 aa protein and that both pORF3 and pORF2 are formed from a single subgenomic RNA (Graff et al., 2006; Huang et al., 2007). No discrete function has been assigned to pORF3 except that it is a cytoskeleton-associated protein that may be involved in host interactions, virion assembly and exit (Zafrullah et al., 1997; Moin et al., 2007, 2009; Chandra et al., 2008; Takahashi et al., 2008; Kannan et al., 2009; Yamada et al., 2009). The 3′ NCR is 65–74 nt long, contains cis-acting elements for pRdRp binding and ends in a poly(A) tail (Agrawal et al., 2001).

Transient transfections of full-length capped RNA transcripts (replicons) in cell culture have helped to delineate
the events during the HEV replication cycle (Panda et al., 1995, 2000; Thakral et al., 2005). It is essential to understand the replicon life cycle in such systems, especially as a function of time, so as to allow easy understanding of the stages of replication and the regulation involved. However, inherent technical problems in transient transfection systems made such studies difficult. In the recent past PLC/PRF/5 and A549 cells have been shown to be susceptible to HEV infection (Tanaka et al., 2007). Several clinical studies carried out recently (Kumar Acharya et al., 2007; Zhang et al., 2006; Fan et al., 2007) have demonstrated a poor prognosis when HEV superinfects chronic hepatitis B virus-infected individuals. The PLC/PRF/5 cell line, with several integrated hepatitis B virus (HBV) genes, may affect HEV replication in ways unknown to us, and A549 is a non-hepatic cell line. Therefore, the replicon-transfection method described by us remains the best method for studying HEV replication, even though it excludes the steps of attachment, entry and release of the genome. The use of antibiotic selection and stable cell lines helped in producing accumulative data, such as the possibility of a single subgenomic RNA of 2.2 kb (Graff et al., 2006) and pRdRp localization (Rehman et al., 2008). The above studies have helped in elucidating the different stages in HEV replication but none could provide a timescale analysis of the process.

In this report we have constructed a new full-length cDNA clone of a genotype 1 HEV that was isolated directly from a human patient without animal passage, studied the replication of the transfected replicon over a time and observed a cyclical process that was unknown to date.

RESULTS

Detection of full-length HEV replicon replication

Upon electroporation of Huh7 cells, the in vitro-generated capped polyadenylated RNA transcripts (replicons) from a newly constructed full-length HEV clone (genotype 1) (pSGHEV-HB, GenBank accession no. FJ457024; Supplementary Fig. S1, available in JGV Online) derived from human bile, collected post-mortem, demonstrated negative-sense RNA synthesis as well as expressing virally encoded proteins (Figs 1 and 2). Cells were co-transfected with HEV replicon and molecular beacons (Rehman et al., 2008) specific for negative-sense viral RNA, and cells were scanned for beacon-induced fluorescence beginning from 4 h post-transfection. Faint signals were picked up at 5 h post-transfection (Fig. 1a) and, during time-lapse imaging, intensified up to 8 h (Fig. 1c), fading thereafter by 12 h (Fig. 1d) (Video as Supplementary Data, available in JGV Online). Mock-transfected cells and cells transfected with replicon containing dysfunctional replicase (pSGHEV-HBmutRdRp) and the beacon showed no fluorescence (Fig. 1e).

Indirect immunofluorescence assays, carried out at 72 h post-transfection to detect viral proteins from the replicon (pSGHEV-HB) with anti-ORF2- and anti-ORF3-specific rabbit polyclonal antibodies, demonstrated the presence of proteins (Fig. 2a, b). Cells transfected with mutant replicons (pSGHEV-HBmutRdRp) showed no fluorescence (Fig. 2e). Huh7 cells transfected with pcDNA3ORF2 and pcDNA3ORF3 served as positive controls (Fig. 2c, d).

Analysis of viral genomic, subgenomic and negative-sense RNA at different time points

Capped, polyadenylated replicons generated by in vitro transcription (IVT) used for transfection experiments to study the virus life cycle were DNase treated to remove any remnant plasmids. This was confirmed by using gel electrophoresis (Fig. 3a) and by strand-specific PCR (Fig. 3b) using primer 6880FP (Supplementary Table S2, available in JGV Online) during reverse transcription. This also confirmed the strand specificity of our experiment as described by us previously in Panda et al. (2000) and Rehman et al. (2008).

Fig. 1. Confocal live cell imaging for detection of negative-sense RNA from HEV (genotype 1) cDNA clone (pSGHEV-HB). Frames from confocal live cell imaging of Huh7 cells co-transfected with molecular beacon (BH2Q-6064-6083-Alexa 546) and in vitro transcribed capped polyadenylated replicons from pSGHEV-HB (a–d) or pSGHEV-HBmutRdRp (e). The molecular beacon is specific for negative-sense viral RNA replicative intermediate and the images in the figure show a gradual increase in fluorescent signal through time in panels (a–d): 5 h (a), 6 h (b), 8 h (c) and fading thereafter by 12 h (d) post-transfection. The arrows point to the fluorescence from the same cell at different time points. Cells transfected with replicons from pSGHEV-HBmutRdRp and beacons showed no fluorescence (e).

http://vir.sgmjournals.org 573
Electroporation of replicons into a suspension of serum-starved (for 24 h) host cells (10⁷ cells), and later distributing them into culture plates, allowed for uniformity of transfected cells in each plate and for approximate synchronization of the cell population. Electroporation resulted in 30–35 % cell death, as determined by monitoring the viable cell counts after electroporation and before plating. Plates were harvested every 2 h post-electroporation and the RNA isolated and quantified. Viral copy numbers obtained by real-time PCR quantification from 2 m⁴ g of input RNA were used to calculate the total number of virus copies present in the plate. The copy numbers were further normalised for variation in electroporation efficiency, and graphs (Fig. 4) were plotted with these values. The copy number versus time point plots for negative-sense RNA (Fig. 4b, c) showed an early burst with copy number reaching a maximum (1.2 × 10⁶) at 8 h from 4 × 10⁵ copies at 4 h, followed by a constant copy number of approximately 5 × 10⁵ from 12 to 24 h. Cells harvested immediately post-transfection showed no negative-sense RNA, while cells harvested at 2 h post-electroporation had ~5 × 10² copies (Fig. 4b, c; Supplementary Table S1, available in JGV Online). This matched up with our real-time live cell imaging, where the brightest beacon-induced fluorescence was seen at 8 h (Fig. 1c) (Supplementary Video). Negative-sense RNA was analysed using two primer pairs, one falling in the ORF1 region (2589–2714) and the other in the ORF2 region (6880–7038). Both the amplicons showed similar copy numbers (Fig. 4b, c, Supplementary Table S1). The cells transfected with the GDD mutant-defective replicon showed no negative-sense RNA (Fig. 4b, c).

The positive-sense genomic and subgenomic RNA of HEV were analysed using three primer pairs falling in the ORF1, ORF2 and the earlier described 3.7 kb subgenomic region (Tam et al., 1991; Xia et al., 2000). The three amplicons used were: 2589–2714 (ORF1), 6880–7038 (ORF2) and 4554–4705 (3.7 kb hypothetical subgenomic RNA region). The 2589 amplicon was used to estimate genomic RNA. The 6880 amplicon in comparison with amplicons 2589 and 4554 was used for identification of the 2.2 kb subgenomic RNA. In addition, amplicon 4554 was used for analysing the existence of the 3.7 kb subgenome. The positive-sense genomic and subgenomic RNA of HEV were analysed using three primer pairs falling in the ORF1, ORF2 and the earlier described 3.7 kb subgenomic region (Tam et al., 1991; Xia et al., 2000). The three amplicons used were: 2589–2714 (ORF1), 6880–7038 (ORF2) and 4554–4705 (3.7 kb hypothetical subgenomic RNA region). The 2589 amplicon was used to estimate genomic RNA. The 6880 amplicon in comparison with amplicons 2589 and 4554 was used for identification of the 2.2 kb subgenomic RNA. In addition, amplicon 4554 was used for analysing the existence of the 3.7 kb subgenome. The positive-sense strands were present at 10³-fold higher copy numbers than the negative-sense strands (Fig. 4; Supplementary Table S1). The copy number versus time plot for positive-sense RNA showed three peaks at 8, 14
and 24 h. The positive-sense-strand copy numbers were highest at 14 h post-transfection. This was after the initial peak for the negative-sense strands at 8 h. At 14 h the 6880 amplicon had a copy number of 1.0×10^{10} as compared with 6.8×10^9 copies of the 2589 and 4554 amplicons (Fig. 4a; Supplementary Table S1). There were comparable bursts in copy number for the positive-sense strands at 8 and 24 h, with the copy number of the 6880 amplicon being clearly higher than those of the 2589 and 4554 amplicons. The subgenomic RNA, as identified by amplicon 6880, was present in excess at 8, 14 and 24 h and at the rest of the time points was in concordance with the copy numbers of the genomic RNA. Both the 2589 and 4554 regions showed similar copy numbers and were always lesser than the copy number of the 6880 amplicon, especially at 8, 14 and 24 h, indicating the presence of smaller single subgenomic RNA. The predicted 3.7 kb subgenomic RNA was not confirmed. The GDD replicase mutant pSGHEV-HBmutRdRp showed no increase in copy numbers. On the other hand, the copy numbers declined over the time points taken (Fig. 4d; Supplementary Table S1), indicating decay in the transfected RNA.

Subgenomic RNA and structural protein expression

The ability of the single subgenomic RNA (Graff et al., 2006; Huang et al., 2007) to produce both pORF2 and pORF3 was tested using in vitro-synthesized capped subgenomic RNA SG-ORF2mCherry produced from construct pSGHEV-HB-ORF2mCherry and SG-ORF3EGFP produced from construct pSGHEV-HB-ORF3EGFP (Fig. 5).
Cells electroporated with SG-ORF3EGFP or replicons from pSGHEV-HBORF3EGFP and fixed 24 and 72 h post-transfection showed EGFP autofluorescence indicating pORF3 formation (Fig. 5i, k). Similarly, cells electroporated with SG-ORF2mCherry showed cherry red autofluorescence (Fig. 5h) and additionally indirect immunofluorescence was performed for detecting pORF3 in SG-ORF2mCherry-transfected cells. Cells showed green FITC immunofluorescence signals from the same cells showing mCherry autofluorescence, corresponding to pORF3 and pORF2 expression (Fig. 5g). Similar autofluorescence and immunofluorescence signals were observed in the full-length replicon pSGHEV-HBORF2mCherry-transfected cells (Fig. 5e, f). This result confirms the earlier described single subgenomic RNA, the start site of the subgenomic RNA and the described AUG start codons for pORF3 and pORF2 (Graff et al., 2006).

DISCUSSION

The virus replication cycle has only been studied in great detail in a handful of viruses. These are the ones that have a facile growth and cytopathic effect (Sawicki & Sawicki, 1980; Strauss & Strauss, 1994). In the absence of these two characteristics it is difficult to study the replication cycle of a virus in detail. For such viruses, transfecting cell lines...
with replicons rescued from cDNA clones is an alternative strategy. The only in vitro cell-culture system developed for HEV in PLC/PRF/5 and A549 cell lines is not yet well characterized (Tanaka et al., 2007). PLC/PRF/5 contains an integrated HBV genome, and the mutual interaction between the viruses (HBV and HEV) is yet to be defined. Therefore, study of the transient-transfection system over a time course is the best alternative method to understand HEV biology (Panda et al., 2000).

Briefly, a cDNA clone (pSGHEV-HB) of HEV was constructed and the replication of its replicon in Huh7 cells was studied using strand-specific real-time PCR of intracellular viral RNA and by live cell imaging of the negative-sense strand using molecular beacons. A defective replicase mutant of the same clone (pSGHEV-HBmutRdRp) was used as a control. Cells were transfected by electroporation, which helped to produce uniform transfected cells in each culture plate. Approximate synchronization of cell cultures before transfection further helped in normalizing the variability, as seen by the total RNA yield from each plate (18-20 μg). In our earlier study the negative-sense strand of HEV was detected 6 h post-transfection (Thakral et al., 2005). Hence we quantified viral RNA every 2 h until 24 h post-transfection.

The real-time RNA quantification showed a temporally separated increase in the positive-sense and negative-sense RNA (Fig. 4). Furthermore, negative-sense RNA intermediate was prominent only at the initial time points (up to 8 h) (Fig. 4b, c). Live cell beacon-induced fluorescent imaging for the negative-sense RNA showed its formation as early as 5 h post-transfection, peaked at 8 h post-transfection (Figure. 1a, c) and became faint by 12 h post-transfection and beyond. For the first time, we describe visualization of negative-sense RNA as it is formed, using live cell imaging (Fig. 1), and this corroborated the data obtained from real-time PCR.

The low negative-sense RNA copy number (~500 copies) at 2 h is explained by the time taken for cell stabilization after electroporation and for replicase generation. The burst in copy number at 4 h post-transfection and its rapid increase until 8 h post-transfection is due to newly synthesized replicase and the presence of larger amounts of input RNA (Fig. 4; Supplementary Table S1). Beyond this point the copy number of the antisense RNA reduced to ~10^5 copies, for the 24 h during which we tested, similar to what was observed for other viruses (Sawicki & Sawicki, 1980; Strauss & Strauss, 1994). There must be similar subtle regulatory mechanisms in play which are yet to be understood in HEV.

Further negative-sense RNA copy numbers analysed using two amplicons, which fall in the subgenomic region (nt 6880–7038) and ORF1 region (nt 2714–2589), had similar copy numbers (Fig. 4b, c), nullifying the possibility of any negative-sense subgenomic RNA.

The positive-sense RNA increased with time; peak copy number was detected at 14 h, 6 h after the negative-sense RNA. This alternate pattern of negative- and positive-sense RNA formation serves as an important host-defence evasion mechanism (Sawicki & Sawicki, 1980; Strauss & Strauss, 1994). Studies involving quantification of positive- and negative-sense RNA over a time frame in alphaviruses (Semliki Forest virus and Sindbis virus) have shown a temporal separation and alternate increase of positive and negative strands. No such studies are available for non-culturable and non-cytopathic viruses like HEV.

The existence of the two 3' -co-terminal subgenomic RNA (Tam et al., 1991; Xia et al., 2000) has remained intriguing. Recent reports show a single 2.2 kb subgenomic RNA by using probes falling only in the 3' end of the genome (Graff et al., 2006); they also speculated that the earlier 3.7 kb fragment might be a defective virus. Our analysis, involving both regions (4554 and 6880 amplicons), favours the single 3' -terminal subgenomic RNA, as described by Graff et al. (2006). The 6880 amplicon, during the positive-sense peak at 14 h, showed a higher copy number (1.0 × 10^9) than the 2589 and 4554 amplicons (6.8 × 10^8), which were identical in number (Supplementary Table S1). Thus we can infer that there are additional RNA species in the form of subgenomic RNA in the described region (Fig. 4). The 2589 and 4554 amplicon copy numbers were similar throughout the time course; no existence of the earlier predicted 3.7 kb subgenomic RNA was indicated (Tam et al., 1991; Xia et al., 2000). The replicase-mutant control showed no increase in copy number over the entire time period of the study (Fig. 4d), showing the importance of the GDD catalytic domain in the overall activity of the replicase (Emerson et al., 2004b). This comparison paves the way to similar studies for understanding the involvement of other non-structural proteins in HEV replication.

The positive-sense strand peaks at 8, 14 and 24 h showed high copy numbers for subgenomic RNA (Fig. 4a), which indicates the importance and necessity of structural protein, before the availability of genomic RNA, for packaging. We presume that a virus-infected cell behaves like a factory where raw materials and components for assembly are produced before the final product (a burst of virus release), and the process is repeated again, especially in a non-cytopathic virus like HEV.

Considering the potential of the single subgenomic RNA in the HEV life cycle, we tried to confirm its ability to translate the proteins pORF2 and pORF3, by using fluorescent proteins placed in-frame. In vitro-synthesized capped subgenomic RNA made to form from the earlier described start site, nt 5122 (Graff et al., 2006) (nt 5124 in case of the FJ457024 clone) were transfected and were shown to form pORF2 and pORF3. An alternative indirect immunofluorescence experiment showed the production of both proteins, pORF2 and pORF3 (Fig. 5g). This is the first time any such visual confirmation of the formation of pORF2 and pORF3 from the single subgenomic RNA has been obtained.

The complexity shown in the replication of HEV is possible only by a subtle regulation process involving the processing of viral non-structural proteins and regulation of cellular
protein machinery (Sawicki & Sawicki, 1980). HEV pORF1 is processed only in the context of replication (Ansari et al., 2000). Sehgal et al. (2006) showed abnormal pORF1 processing in a baculovirus system. The speculation that pORF1 processing might have a role in the regulation of replication could be interesting.

Our study demonstrated a cyclical pattern of virus growth in the case of acutely infecting non-cytopathic HEV, which has not been described before. We also reconfirm the in the case of acutely infecting non-cytopathic HEV, which replication could be interesting.

pSGHEV-HB-ORF2mCherry and pSGHEV-HB-ORF3EGFP were digested with XhoI to produce DNA templates for run-off transcription. Linearized plasmids were in vitro transcribed to produce capped, full-length transcripts by using mMESSAGE mACHINE T7 Ultra kits (Ambion, USA) as per the manufacturer’s instructions. An additional 2 µl of the GTP provided was added to the reaction in view of the long transcripts. The reaction was incubated for 3 h at 37 °C and an additional 2 µl of T7 enzyme mix was added after 1.5 h. At the end of the incubation the input DNA was removed by DNase digestion and the reaction cleaned using phenol/ chloroform extraction. The removal of remnant plasmid was checked both on a formaldehyde–agarose gel (Fig. 3a) and by strand-specific PCR (Rehman et al., 2008) using the 6880FP and 6880RP primer pair (158 bp) (Fig. 3b; Supplementary Table S2). In vitro-transcribed RNA was quantified using a Nanodrop spectrophotometer (Thermo Scientific).

Subgenomic transcripts were produced using a T7 promoter attached to a PCR product produced by amplifying nt 5124–6964 using primer pairs with an additional 5′ T7 promoter sequence (Supplementary Table S2). These amplicons from pSGHEV-HB-ORF2mCherry and pSGHEV-HB-ORF3EGFP were used to produce capped subgenomic transcripts SG-ORF2mCherry (Fig. 5c) and SG-ORF3EGFP (Fig. 5d), respectively, using an mMessage mMACHINE T7 ultra kit (Ambion) as per the manufacturer’s instructions. Poly(A) tails were added to subgenomic transcripts by using poly(A) polymerase provided in an mMessage mMACHINE T7 ultra kit (Ambion) and used as per the manufacturer’s instructions.

METHODS

Assembly of a full-length cDNA clone of HEV (genotype 1), isolated from human bile (pSGHEV-HB). We constructed a full-length cDNA clone (pSGHEV-HB, GenBank accession no: FJ457024) of a HEV isolate (genotype 1) from bile, collected post-mortem with the necessary consent, from a patient who had acute liver failure, whose genome was amplified in five overlapping contiguous portions (nt 1–1225nt, nt 1203–2966, nt 2544–4873, nt 4413–5815 and nt 5601–7194) of genome (AF076239) from India (Supplementary Table S2). The HEV genome was amplified in five overlapping contiguous portions (nt 1–1225nt, nt 1203–2966, nt 2544–5815 and nt 5601–7194) and cloned into pPCR-Script Amp SK(I) (Stratagene) as per the manufacturer’s instructions. Exon 5 and 3′ RACE for the extreme ends were performed and the sequences cross checked with nt 1–1208 and nt 5601–7194. The latter was replaced with the 3′-end RACE product. The above clones were used for reconstruction of the full-length cDNA clone (Supplementary Fig. S1). All clones mentioned above and hereafter were confirmed by sequencing by using Big Dye Terminator 3.0 (Applied Biosystems) in an ABI 310 automated sequencer (Perkin Elmer).

Construction of an RdRp functional mutant (pSGHEV-HBmutRdRp). A functional mutant of RdRp was generated by mutating the GDD catalytic triad to GAA in a pSGHEV-HB clone using a primer pair containing the altered sequence (Supplementary Table S2) to introduce the mutation using a SureSite mutagenesis kit (Stratagene) as per the manufacturer’s instructions.

Construction of fluorescent reporter replicons. The replicon pSGHEV-HB-ORF2mCherry was constructed by replacing nt 5488–6964 of pSGHEV-HB with an mCherry gene. The remaining partial fragment of HEV ORF2 was then out of frame (Fig. 5a). The mCherry gene was amplified by PCR from the plasmid pRSET-mCherry kindly provided by Dr Roger Tsein, a Howard Hughes Medical Institute (HHMI) investigator, University of California San Diego, USA) by using a GFP FP and GFP RP primer pair (Supplementary Table S2) including the 3′ terminal Nhel site. The 5′ end of the mCherry gene was extended with nt 4858–5488 of pSGHEV-HB, which was generated by fusion PCR using 4873 Apol FP and ORF2 chery RP primer pairs which included a 5′ terminal Apol site (Supplementary Table S2). The resulting fused PCR product was digested with Apol and Nhel and subcloned into pSGHEV-HB to yield pSGHEV-HB-ORF2-mCherry (Fig. 5a).

The construct pSGHEV-HB-ORF3-EGFP (Fig. 5b), in which the EGFP gene, placed in-frame with ORF3, was constructed by replacing nt 5475–6964 of pSGHEV-HB with an EGFP gene using a similar strategy.

In vitro production of capped full-length replicons and capped subgenomic transcripts. pSGHEV-HB, pSGHEV-HBmutRdRp,
Replicons from pSGHEV-HB and mutant replicons from pSGHEV-HBmutRdRp for live cell imaging were electrotransfected as described above along with 100 nM of molecular beacon (BHQ2-6064-6083-Alexa 546; Operon Biotechnologies). The beacon designed was specific against negative-sense replicative intermediate (Rehman et al., 2008). The cell suspensions were plated on LabTek II chambered cover glass (Nalge Nunc).

Two-step strand-specific real-time-PCR quantification of intracellular viral RNA.

Reverse transcription (step one). Every 2 h post-transfection one plate from each batch, i.e. one plate of pSGHEV-HB and one of pSGHEV-HBmutRdRp, was harvested. The supernatant was collected and any unattached cells present were pelleted, resuspended and put back into the tube so that no cell loss occurred. The pellets were washed in PBS (pH 7.4) and lysed in 1 ml TRIzol reagent. Total RNA was isolated and quantified spectrophotometrically. RNA from each plate was subjected to strand-specific reverse transcription (Rehman et al., 2008) using five primers [2714 RP, 4705 RP, 7038 RP (for the positive-sense strand) and 6880 FP and 2589 FP (for the negative-sense strand); 300 nM each] in five separate reactions. The strand specificity of these primers and the process described above was tested using IVT product with a large amount of RNA used as a control in an experiment to detect negative-sense RNA, which showed no signal (Fig. 3b). Reverse transcription was carried out by using 2 μg total cellular RNA with 50 U Superscript RT-III enzyme (Invitrogen) in a 20 μl reaction at 55 °C for 1 h. Standards for absolute quantification in real-time PCR were made using serially diluted known quantities of transcripts from the pSGHEV-HB clone and were reverse transcribed using primer 7038 RP.

Real-time PCR (step two). Following cDNA synthesis, the RNA was degraded by digestion with 2.5 U RNase H (Ambion) and 0.75 μg RNase A (Ambion) at 37 °C for 30 min. Five microlitres of the reverse-transcribed product was used in a 50 μl cDNA amplification reaction with 300 nM forward and reverse primers (Supplementary Table S2) using SYBR Green PCR Core reagents (1.25 U AmpliTaq Gold, 0.5 U AmpErase; PE Biosystems). The reactions were set up in MicroAmp Optical 96-well reaction plates (Perkin Elmer Applied Biosystems), sealed and run on a Perkin Elmer ABI Prism 7700 Sequence Detection system (Applied Biosystems) with 40 cycles of annealing and extension (60 °C for 1 min) and denaturation (95 °C for 1 min).

The copy numbers from each plate were determined using the copy numbers obtained from 2 μg of total RNA, and a graph was plotted with copy number on the y-axis and time points on the x-axis. Furthermore, the copy numbers obtained for the normal and mutant replicons in all the repetitions were normalised using the post-electroporation viable cell counts. The reproducibility of electroporation and the real-time assay were checked by carrying out these assays in triplicate for both the wild-type and mutant replicons. The graphs were plotted with the mean copy numbers obtained from the three studies, with error bars showing so.

Confocal live cell time-lapse imaging for monitoring negative-sense RNA replicative intermediate by the use of strand-specific molecular beacons. Huh7 cells were plated in LabTek II chambered cover glass (Nalge Nunc). Cells were monitored up to 12 h post-transfection after media change with a LEICA TCS SP5 confocal system with attached ludwin CO2 incubator chamber and temperature control stage. For Alexa 546 excitation, He-Ne LASER lines were used. The scanning was done sequentially over a period of 8 h (4–12 h post-transfection) as a time lapse sequence with 10 min interval.

Fluorescent imaging and indirect immunofluorescence. Indirect Immunofluorescence was performed to detect expression of viral proteins (pORF2 and pORF3) in electroporated cells with a replicon from pORF3 and mutant replicons from pSGHEV-HBmutRdRp at 72 h post electroporation. Indirect immunofluorescence was also performed to detect pORF3 in cells electroporated with pSGHEV-HB-ORF2mCherry at 72 h post-electroporation and in cells electroporated with SG-ORF2mCherry at 24 h post-electroporation. Cells on the coverslips were washed three times with 0.05 M PBS (PBS pH 7.4, 137 mM NaCl, 2.7 mM KCl, 0.9 mM KH2PO4, 0.63 mM Na2HPO4), followed by fixing with 4 % paraformaldehyde (in 0.05 M PBS) at room temperature for 7 min. The cells were then washed with PBST (0.1 % Tween 20 in 1 × 0.05 M PBS), followed by permeabilization with 100 % methanol at −20 °C for 3 min. The cells were rehydrated with 0.05 M PBS for 20 min at room temperature. Blocking was carried out with 1 % BSA (Sigma) in 0.05 M PBS for 1 h at room temperature, followed by further blocking with 5 % normal goat serum (NGS) in PBST for 2 h at room temperature. Cells were then washed with PBST. After blocking, cells were incubated with primary antibody (rabbit anti-ORF2 and anti-ORF3; mouse anti-ORF3 monoclonal antibody for ORF2mCherry constructs) at 1:150 dilution prepared in blocking solution (1 % NGS in PBST) for 1 h at room temperature. The cells were then washed three times with PBST (10 min each wash). The primary-antibody labelled cells were further incubated with secondary antibody (goat anti-rabbit immunoglobulins conjugated with Alexa 546, goat anti-mouse immunoglobulins conjugated with FITC) in a 1:1000 dilution prepared in blocking solution (1 % NGS in PBST) for 30 min at room temperature. The cells were washed three times with PBST (10 min each wash) and mounted in 65 % glycerol prepared in PBS. Fluorescence was observed under a Nikon inverted fluorescence microscope (Eclipse TE 2000U) by excitation/emission at 556/573 nm and photographed.

Cells transfected with replicons from pSGHEV-HB-ORF3EGFP and SG-ORF3EGFP transcripts were fixed as described above and mounted directly for autofluorescent imaging.

ACKNOWLEDGEMENTS

This work was supported by a Grant-in-Aid from the Department of Biotechnology, Government of India, to Professor Subrat Kumar Panda, also a recipient of a J. C. Bose fellowship from the Department of Science and Technology, Government of India. Satya Pavan Kumar Varma is a recipient of a fellowship from the University Grants Commission, Government of India. Amit Kumar and Neeraj Kapur are recipients of fellowships from the Council of Scientific and Industrial Research, Government of India. mCherry used for the study was kindly provided by Dr Roger Tsein, an HHMI investigator, University of California San Diego, USA.

REFERENCES

