Mutation of a chloroplast-targeting signal in *Alternanthera* mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement

Hyoun-Sub Lim,† Anna Maria Vaira,‡ Hanhong Bae, Jennifer N. Bragg, Steven E. Ruzin, Gary R. Bauchan, Margaret M. Dienelt, Robert A. Owens and John Hammond

1USDA-ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, B-004, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
2CNR, Istituto di Virologia Vegetale, Strada delle Cacce 73, Torino 10135, Italy
3School of Biotechnology, Yeungnam University, Geongsan 712-749, Republic of Korea
4USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
5University of California-Berkeley, CNR, 381 Koshland Hall, Berkeley, CA 94720, USA
6USDA-ARS, Plant Sciences Institute, Electron and Confocal Microscopy Unit, B-465, 10300 Baltimore Avenue, Beltsville, MD 20705, USA

INTRODUCTION

Plant viruses rely on the availability of connections between cells and the vascular system and utilize the resources of the endogenous host trafficking systems, such as cytoskeleton, endoplasmic reticulum (ER) and Golgi, to facilitate movement in a susceptible host and establish a successful infection. Viral genomes encode proteins that have evolved to achieve these functions (Leisner & Howell, 1993; Lucas, 2006; Verchot-Lubicz et al., 2007). Research on the mechanisms of plant virus movement has provided insight into the interactions that must occur with the host for the virus to move into adjacent cells (Boevink & Oparka, 2005; Lucas, 2006; Waigmann et al., 2004). In addition to viral movement proteins, some viral RNAs also have a role in systemic invasion (Ding et al., 1996; Lough et al., 2006).

For mechanically transmitted viruses, such as potexviruses, infection initiated in epidermal cells spreads by cell-to-cell movement via mesophyll and bundle sheath cells to the phloem parenchyma and companion cells. Steps involved in virus entry and exit from the sieve elements (Ding, 1998; Haywood et al., 2002; Lough & Lucas, 2006; Lucas et al., 2001) are still poorly understood; however, isolation of mutants that can move from cell to cell but not systemically suggests that phloem-dependent transport involves interactions separate from those involved in cell-to-cell movement (Dolja et al., 1994; Xiong et al., 1993).
Several groups of viruses encode a ‘triple gene block’ (TGB) of movement-related proteins. These have been differentiated into ‘class I’ hordei-like viruses, which have rigid, rod-shaped particles, and ‘class II’ potex-like viruses, having flexuous particles [exemplified by Potato virus X (PVX), type member of the genus Potexvirus] (reviewed by Morozov & Solovyev, 2003). Potexviruses have positive-sense, single-stranded, monopartite RNA genomes of approximately 5.9–7.0 kb with five gene products (Adams et al., 2004; Fig. 1a); other well-studied members include White clover mosaic virus (WClMV), Papaya mosaic virus (PapMV), Foxtail mosaic virus (FMV) and Bamboo mosaic virus (BaMV). Alternanthera mosaic virus (AltMV) is related most closely to PapMV (Geering & Thomas, 1999; Hammond et al., 2006).

Several reports have addressed the contributions of TGB proteins to movement for WClMV (Lough et al., 1998), PVX (Ju et al., 2005; Krishnamurthy et al., 2003; Lough et al., 2000; Solovyev et al., 2000; Tamai & Meshi, 2001) and BaMV (Lin et al., 2006), and describe trans-complementation of potexviral genomes with defects within the TGB through delivery of functional TGB constructs by using particle bombardment (Morozov et al., 1997), transgenic plants (Lough et al., 1998) or satellite RNA (Lin et al., 2006). Despite this body of work, ‘a full understanding of the specific requirement of TGB3 and the functional interchangeability of TGB3 among different potexviruses for intercellular movement remains elusive’ (Lin et al., 2006).

The 8 kDa PVX TGB3 is an ER-binding protein with a single, N-terminal transmembrane domain (Morozov & Solovyev, 2003; Verchot-Lubicz et al., 2007), and TGB2 and TGB3 are reported to co-localize (Ju et al., 2008; Solovyev et al., 2000). PVX TGB3 interacts with the ER network and is associated with granular vesicles induced by TGB2 (Samuels et al., 2007). The 7 kDa TGB3 of AltMV is similar in size to that of PVX (Hammond et al., 2006), but appears to behave differently.

Here, we compare subcellular-localization patterns of AltMV and PVX TGB3 fusion proteins expressed in Nicotiana benthamiana leaves by agroinfiltration and show that AltMV TGB3 has properties distinct from those reported for other potexvirus TGB3 proteins. AltMV TGB3 preferentially accumulates near the chloroplast membrane in mesophyll cells and appears to facilitate virus movement between different cell types.

RESULTS

Subcellular localization of PVX and AltMV TGB3

Subcellular localization of several class I (hordeivirus-like) and class II (potexvirus-like) TGB proteins has been investigated by using fluorescent gene fusions (Haupt et al., 2005; Ju et al., 2005; Lim et al., 2009; Lough et al., 1998; Solovyev et al., 2000). To assess localization of AltMV TGB3, we expressed TGB3 from pGDR and pGDG (Goodin et al., 2002) or pHVLR and pHVLG vectors for Agrobacterium-mediated transient expression of DsRed or green fluorescent protein (GFP) fusions (Fig. 1b). Agroinfiltrated N. benthamiana leaves were evaluated for fluorescent protein expression by laser-scanning confocal microscopy (LSCM) and differential interference contrast (DIC) at 2–3 days post-infiltration. Western blots (Fig. 1c) confirmed stable expression of the fusion proteins. Epidermal and mesophyll cells were visualized separately in the same leaf using LSCM by focusing on images at different depths within the Z-stack, and in the transverse sections (Fig. 1e–k).

Transient expression of AltMV DsRed–TGB3 and PVX DsRed–TGB3 are shown (in red) in Fig. 1(e–j). Transverse sections and optical sections at different depths from the adaxial surface were observed. Epidermal cells were recognized by their location at the leaf surface, irregular shape and essential absence of chloroplasts. Elongated-globular palisade mesophyll cells containing numerous chloroplasts (green fluorescence in Fig. 1e–j; red fluorescence in Fig. 1k) were observed beneath the adaxial epidermis. DsRed–TGB3PVX localized at epidermal and mesophyll cell membranes, surrounding nuclei and in the cytoplasmic network of both layers, conforming to reported associations with ER and cell membranes (Ju et al., 2008) (Fig. 1e–g). In contrast, DsRed–TGB3AltMV localized almost exclusively to the mesophyll layer, as punctate fluorescent foci (Fig. 1h–j). DsRed–TGB3AltMV was rarely detected in the epidermal layer (0–20 μm) in either transverse or Z-stack sections, but was detected readily within mesophyll cells; in optical sections, most DsRed–TGB3AltMV fluorescence was detected at about 40 μm depth. GFP–TGB3AltMV showed a similar distribution (data not shown).

When pGDR–TGB3 (DsRed–TGB3AltMV) and pGDG–TGB3PVX (GFP–TGB3PVX) were co-agroinfiltrated, the calculated lateral image from a Z-stack image of 40 optical slices of 1 μm from the adaxial epidermis into the mesophyll layer clearly differentiated localization of DsRed–TGB3AltMV (shown as green) and GFP–TGB3PVX (shown as grey). TGB3AltMV was concentrated in the mesophyll layer at 20–40 μm, whereas TGB3PVX was observed at between 0 and 20 μm in epidermal cells (Fig. 1k).

Because localization of PVX GFP–TGB2 and GFP–TGB3 is altered by co-expression of PVX TGB3 (Schepetilnikov et al., 2005; Solovyev et al., 2000), we co-expressed free AltMV TGB2, TGB2 + TGB3 or TGB3 (from pGD–TGB2, pGD–TGB2/3 and pGD–TGB3, respectively; Fig. 1d) with DsRed–TGB3AltMV. No alteration of DsRed–TGB3 localization was observed (data not shown).

Comparative analysis of AltMV and other potexvirus TGB3 sequences

BLASTP analysis of the AltMV TGB3 amino acid sequence showed limited similarity to potexvirus homologues, with
Fig. 1. Transient expression of TGB3 fusion proteins in *N. benthamiana*. (a) Genome organization of AltMV. (b) pGDG (GFP–TGB3), pGDR (DsRed–TGB3), pHVLG (TGB3–GFP) and pHVLR (TGB3–DsRed) TGB3_{AltMV} and TGB3_{PVX} fusion constructs. (c) Western blot with anti-GFP antibodies (Ab) of agroinfiltrated leaf extracts separated by SDS-PAGE (12 % gel). Lanes: 1, pGDG (GFP); 2, pGDG–TGB3_{AltMV}; 3, pGDG–TGB3_{PVX}; 4, pHVLR–TGB3_{AltMV}. Arrows indicate positions of standards. (d) pGD constructs for agroinfiltration of TGB2/3, TGB2 and TGB3. (e–k) *N. benthamiana* tissue agroinfiltrated with pGDR–TGB3_{PVX} (e–g), pGDR–TGB3_{AltMV} (h–j) or pGDR–TGB3_{AltMV} plus pGDG–TGB3_{PVX} (k). Transverse sections (e, h) and optical sections at 20 μm (f, i) and 40 μm (g, j) depth (0 μm, top of epidermis). Chloroplast autofluorescence is shown as green (e–j). (e–g) DsRed–TGB3_{PVX} was observed in both epidermal and mesophyll cells, at the cell periphery and ER network; the inset in (f) shows a magnified image of the arrowed area. (h–j) DsRed–TGB3_{AltMV} was localized to mesophyll cells; the magnified inset in (j) shows the association with chloroplasts. (k) pGDR–TGB3_{AltMV} and pGDG–TGB3_{PVX} were co-infiltrated; a calculated projection of 40 optical slices (Z-stack) from the adaxial epidermis illustrates separation of GFP–TGB3_{PVX} (grey) in the epidermal layer from DsRed–TGB3_{AltMV} (green) and chloroplast autofluorescence (red) primarily in the mesophyll layer. Bars (f, g, i, j), 50 μm.
only 42% identity to PapMV TGB3 and 38% identity to just the C-terminal region of tulip virus X (TVX) TGB3. Additional gaps were introduced into a CLUSTAL alignment of the TGB3 amino acid sequences of AltMV, PVX and other potexviruses to optimize alignment of the TGB3 ‘signature motif’ (Morozov et al., 1991). TGB3 proteins of TVX and Plantago asiatica mosaic virus (PIAMV) have significantly extended N termini, and that of PIAMV an extended C terminus, whilst FMV and BaMV TGB3 proteins have shorter C termini relative to AltMV TGB3 (Fig. 2). The TGB3 ‘signature motif’, C(X5)G(X6–9)C (Morozov et al., 1991; Morozov & Solovyev, 2003), was present in all sequences.

The pfam02495 7 kDa viral coat protein (CP) domain identified in many potex- and carlavirus TGB3 sequences was variously complete [clover yellow mosaic virus (ClYMV), WClYMV], truncated (PVX, TVX, PIAMV) or not recognized (AltMV and other viruses; see Supplementary Table S2, available in JGV Online).

The Phobius software package has been shown to improve differentiation of signal peptides (SPs) from transmembrane domains (Käll et al., 2004, 2005). AltMV, PapMV, ClYMV, FMV and zygocactus virus X (ZVX) TGB3 proteins were predicted by Phobius to have N-terminal SPs, whilst PVX, WClYMV, TVX and PIAMV TGB3 proteins were predicted to have N-terminal transmembrane domains; the BaMV TGB3 N-terminal domain prediction was inconclusive (Fig. 2; Supplementary Table S2). Predicted transmembrane domains of TVX and PIAMV TGB3 proteins were internal to the N terminus, corresponding to the aligned transmembrane domains of PVX and WClYMV TGB3 proteins (Fig. 2).

PVX TGB3 has predicted 23 aa N-terminal transmembrane and C-terminal 45 aa cytoplasmic segments (Krishnamurthy et al., 2003). SignalP identified both the PVX TGB3 N-terminal 23 aa and the AltMV TGB3 N-terminal 20 aa as SPs. TargetP identified both PVX and AltMV TGB3s as secretory pathway-directed, whereas ChloroP did not identify either as chloroplast-transit peptides.

The differences in predicted structure and observed localization of AltMV and PVX TGB3 proteins led us to examine the features of AltMV TGB3 responsible.

AltMV TGB3 accumulates in the mesophyll and contains a novel signal for chloroplast membrane localization

To analyse further the importance of AltMV TGB3 amino acid sequences in mesophyll localization, C-terminal fusions of AltMV TGB3 were created (Fig. 3a) in binary vectors pHVLG and pHVLR (TGB3–GFP; TGB3–DsRed) in addition to N-terminal fusions GFP–TGB3 and DsRed–TGB3. Localization of transiently expressed fusion proteins (Fig. 3a) was evaluated. Expression of wild-type (WT) TGB3 as an N- or C-terminal fusion did not change its localization in the mesophyll compared with the epidermis, but affected localization at the chloroplast level (Fig. 3b, c); GFP–TGB3 or DsRed–TGB3 localized as punctate foci associated closely with chloroplasts (Fig. 3b), whilst TGB3–DsRed or TGB3–GFP formed partial or complete fluorescent haloes around the chloroplasts (Fig. 3c). These localizations are distinct from native GFP or DsRed accumulation in mesophyll cells (not shown), presumably reflecting the position of TGB3 exposure in the fusion protein.

A series of deletion mutants (N- or C-terminal fusions; Fig. 3a) was produced in order to identify residues required for chloroplast or mesophyll targeting. Residues 17–18 (i.e. VL), overlapping the C-terminal portion of the predicted AltMV TGB3 SP, were required (but not necessarily sufficient) for chloroplast targeting. Mutant TGB3ΔN9, lacking this sequence, accumulated in epidermal cells, whereas TGB3ΔN9 and TGB3ΔN16ΔC11 did not and were retained at the chloroplast (Fig. 3a, d–f). TGB3ΔN9 also formed cytoplasmic granules (Fig. 3d) of unknown significance. Isolated chloroplasts were obtained for

Fig. 2. CLUSTAL alignment of TGB3 of AltMV and other potexviruses. Additional gaps were introduced to maximize alignment of the TGB3 ‘signature motif’ (shaded, bold letters; Morozov et al., 1991; Morozov & Solovyev, 2003). Predicted SPs of AltMV, PapMV, ClYMV, ZVX and FMV (white lettering) and transmembrane domains of TVX, PIAMV, WClYMV and PVX are shaded, with AltMV residues VL(17,18) underlined.
Fig. 3. Subcellular localization of AltMV TGB3 mutants. (a) N- and C-terminal TGB3 deletion mutants were introduced into pGDG, pGDR, pHVLG and pHVLR; amino acid sequences maintained in the fusion proteins are shown. (b–g) Constructs were transiently expressed in *N. benthamiana* by agroinfiltration and examined by LSCM at 36 h post-infiltration to detect fluorescent protein expression and chloroplast autofluorescence (shown in red with GFP fusions and in green with DsRed fusions). (b) WT GFP–TGB3 and DsRed–TGB3; (c) WT TGB3–GFP and TGB3–DsRed. (d–g) Expression of mutants from pHVLR (TGB3–DsRed). Epidermal layer: combined DsRed and DIC image. Mesophyll layer: left, combined DsRed and chloroplast autofluorescence; centre, DsRed; right, chloroplast autofluorescence. Far right: chloroplasts extracted from leaf tissue by chopping in water (upper: autofluorescence; middle: DsRed; lower: merge); (d) TGB3ΔN9; (e) TGB3ΔN20; (f) TGB3ΔN16ΔC11; (g) TGB3VL(17/18)AR. Bars, 50 μm.
LSCM by cutting tissue in water, and chloroplast association of VL-containing TGB3–DsRed variants (WT, ΔN9, ΔN16ΔC11) was readily detected. In contrast, deletion ΔN20 (lacking VL) was not associated with isolated chloroplasts (Fig. 3d, e, far right panels).

Mutation of residues 17–18 was sufficient to ablate formation of chloroplast-associated foci; TGB3VL(17,18)AR–DsRed showed epidermal and mesophyll expression similar to that of free DsRed, without chloroplast localization (compare Fig. 3g with Fig. 3c, d).

AltMV TGB2, TGB3, CP and the TGB3 VL(17,18) signal involved in chloroplast targeting are each required for systemic movement

In order to evaluate the contributions of TGB2, TGB3, the apparent TGB3 chloroplast-localization signal and CP in cell-to-cell movement, infectious clone AltMV–enhanced (e)GFP (Fig. 4a) was modified to knock out expression of the TGB2, TGB3 or CP open reading frames (ORFs) by mutation of their respective initiation codons or the TGB3 chloroplast signal [TGB3VL(17,18)AR]. Mutant transcripts were inoculated onto the adaxial leaf surface of *N. benthamiana*. WT AltMV–eGFP was detected at both adaxial and abaxial epidermal surfaces at 5 days post-inoculation (p.i.), and in the mesophyll; horizontal movement reached 1000 μm diameter within 7 days p.i., followed by systemic infection (Fig. 4b). TGB2- and CP-defective viruses (AltMVATGB2–eGFP, AltMVACP–eGFP) infected only single epidermal cells without further movement, and diffusion of free GFP from infected cells was not detected (Fig. 4c, f), similar to studies with WCMV and PVX (Beck et al., 1991; Lough et al., 2000). Surprisingly, limited epidermal cell-to-cell movement of AltMVATGB3–eGFP and AltMV.TGB3(VL17/18AR)–eGFP was detected, with infection foci expanding to 700 μm or less at 7 days p.i. (Fig. 4d, e).

Cell-to-cell movement was compared between WT and mutants by examination of eGFP distribution at 3 and 6 days p.i. AltMVACP showed no movement beyond single cells (Fig. 4g), whereas AltMV.TGB3(VL17/18AR)–eGFP showed limited epidermal movement within 6 days p.i. (Fig. 4h). AltMV–eGFP showed multidirectional movement (Fig. 4i).

Complementation of infectious clone AltMVATGB3 in trans and in cis

GFP expression from AltMVATGB3–eGFP in each cell was uniform (Fig. 4d) and distinct from the single-cell GFP expression observed with AltMVATGB2 and AltMVACP (Fig. 4c, f); however, no eGFP was detected beyond the epidermis. Examination of a Z-stack image beginning in the upper (adaxial) epidermis and extending into the mesophyll layer showed that eGFP expression in these foci was concentrated at the periphery of epidermal cells (Fig. 5a), with none observed in the underlying mesophyll or the abaxial surface (Fig. 5b, c). The calculated lateral image showed clearly that AltMVATGB3–eGFP was confined to the epidermal layer, with total separation from chloroplast autofluorescence in the mesophyll (Fig. 5d).

Impaired cell-to-cell movement of AltMVATGB3–eGFP could be complemented in trans by free TGB3 via agroinfiltration of pGD–TGB3 4 days after inoculation with AltMVATGB3–eGFP transcripts. At 7 days p.i., multidirectional movement had occurred, with AltMVATGB3–eGFP detected in many mesophyll cells and both epidermal surfaces within agroinfiltrated regions (Fig. 5e–g). The calculated lateral image (Fig. 5h) demonstrated overlap of eGFP expression with mesophyll cell chloroplasts, confirming TGB3 complementation and movement within the agroinfiltrated leaf. No systemic movement was observed, as TGB3 agroinfiltration was localized.

As pGD–TGB3 was able to complement movement of AltMVATGB3 within the agroinfiltrated leaf, we also expressed TGB3 in cis as an additional gene inserted into AltMV to examine complementation of both cell-to-cell and systemic movement. Two constructs were engineered: AltMVATGB3(TGB3+) and AltMVATGB3(TGB3–GFP+) (Fig. 5i, j). AltMVATGB3(TGB3+) was able to infect plants systematically, inducing mild vein-associated symptoms (Fig. 5i), demonstrating that TGB3 expressed in cis was active for both cell-to-cell and systemic movement. In contrast, AltMVATGB3(TGB3–GFP+) was able to spread locally within the inoculated leaf, infecting both upper and lower epidermis (Fig. 5j–l). No visible symptoms were apparent in non-inoculated leaves, and CP was barely detectable (Fig. 5j); thus TGB3–GFP was competent for local movement, but not for effective long-distance movement. TGB3–GFP localization from AltMVATGB3(TGB3–GFP+) was not affected by the presence of native TGB2 (data not shown).

Symptoms associated with overexpression of TGB3 are consistent with chloroplast damage

Infectious clone AltMV3-1, which produces mild symptoms (Lim et al., 2010a), was modified to overexpress TGB3 as an added gene. AltMV3-1(TGB3AltMV +) induced significantly more severe symptoms than AltMV3-1, including veinal necrosis from 10 to 15 days p.i. Western blots demonstrated that levels of virus replication were comparable (Fig. 6a, b), whereas quantitative (Q)-RT-PCR results showed that AltMV(TGB3AltMV +) produced 6.5 (±2.97) times more TGB3 RNA than AltMV3-1 (statistically significant at P=0.05 by ANOVA; data not shown). PVX TGB3 was similarly overexpressed in AltMV3-1, but AltMV3-1(TGB3PVX +) did not induce severe symptoms (Fig. 6c, d). AltMV TGB3 or His-tag-modified TGB3 was also overexpressed from PVX-MCS (Fig. 6f, i). WT PVX induced mosaic in *N. benthamiana* and chlorotic local lesions in *Nicotiana tabacum* (Fig. 6e). At 10 days p.i., PVX(TGB3AltMV–His+) showed distinctive veinal necrosis in *N. benthamiana* and necrotic local lesions in *N. tabacum* (Fig. 6f) and, by 30 days p.i., the region of veinal necrosis had become bleached, with significantly...
Fig. 4. Cell-to-cell spread of AltMV–eGFP and derivatives. (a) AltMV–eGFP was modified separately to prevent expression of TGB2, TGB3 or CP. For AltMV{TGB2}–eGFP, the TGB2 sequence was mutated without disrupting the TGB1 ORF (TGB1 codons underlined). For AltMV{TGB3}–eGFP and AltMV{TGB3VL(17,18)AR}–eGFP, the TGB3 sequence was mutated without disrupting the TGB2 ORF (TGB2 codons underlined, TGB3 codons in red). (b–f) RNA transcripts were inoculated to *N. benthamiana* leaves (adaxial side) and LSCM images of adaxial (upper image) and abaxial (lower image) surfaces were captured at 7 days p.i. (b) AltMV–eGFP; (c) AltMV{TGB2}–eGFP; (d) AltMV{TGB3}–eGFP; (e) AltMV{TGB3VL(17,18)AR}–eGFP; (f) AltMV{ΔCP}–eGFP. (g–i) Constructs were inoculated to *N. benthamiana* at 3 days p.i., a 1×1 cm leaf piece was examined by LSCM, maintained for 3 days in water and re-examined. (g) AltMV{ΔCP}–eGFP; (h) AltMV{TGB3VL(17,18)AR}–eGFP; (i) AltMV–eGFP. Bars, 200 μm.
Fig. 5. *Trans* complementation of cell-to-cell spread of AltMVΔTGB3–eGFP. Transcripts were inoculated to *N. benthamiana* leaves (adaxial side), and LSCM images from adaxial (a, b, e, f) and abaxial (c, g) surfaces were captured at 7 days p.i. (a–d) AltMVΔTGB3–eGFP; (f–h) AltMVΔTGB3–eGFP followed 4 days p.i. by pGD–TGB3 agroinfiltration. Right-hand panels are higher magnifications of the areas indicated by arrows. Bars, 50 μm. (d, h) Calculated lateral images illustrate separation of signal from epidermal and mesophyll layers with AltMVΔTGB3–eGFP alone (d), but not when complemented by pGD–TGB3 (h). (i) AltMVΔTGB3(TGB3+) transcript inoculation; overexpression of TGB3 as an added gene from AltMV 3-7 (D) TGB3. (j–l) AltMVΔTGB3(TGB3–GFP+), overexpressing TGB–GFP from AltMV 3-7 ΔTGB3 (j); transcripts were inoculated and inoculated tissue was examined by LSCM at 10 days p.i., from (k) adaxial and (l) abaxial sides (insets are magnified below). Bars, 200 μm. (i, j) Western blots of inoculated and upper leaf samples (20 days p.i.) were developed with AltMV CP–specific antibody (Ab) after separation by SDS-PAGE (12 % gel).
fewer chloroplasts (see Supplementary Fig. S1, available in JGV Online). Overexpression of TGB3VL(17,18)−His from PVX yielded symptoms similar to those of WT PVX in both N. benthamiana and N. tabacum (Fig. 6g). Electron microscopic observation of thin sections from young plant tissues infected with AltMV(TGB3−His+) and PVX(TGB3−His+) revealed major chloroplast malformations with vesicular invaginations of chloroplast membranes, and cytoplasmic membrane proliferation not present with WT PVX or AltMV3−1 infections (Fig. 6i; Supplementary Fig. S2b, c).

Numbers of intact chloroplasts were compared by LSCM in symptomatic leaves infected by PVX and PVX(TGB3−His+). Significantly fewer chloroplasts were observed with PVX(TGB3−His+) than with WT PVX (Supplementary Fig. S1).

AltMV RNA also localizes around chloroplasts

Fluorescence in situ hybridization (FISH) was used to observe the distribution of AltMV RNA between the epidermis and mesophyll. Incubation of fluorescently...
labelled AltMV-specific probe with transverse sections of AltMV-infected N. benthamiana leaf revealed widespread distribution of signal, with the highest intensity in the mesophyll; no signal was observed in non-inoculated control tissue (Fig. 7a, b). Closer examination revealed that signal in the epidermis was concentrated at the lower boundary of the cells, mainly in globular bodies consistent with chloroplasts; the signal in the mesophyll was also consistent with a distribution surrounding the chloroplasts (Fig. 7c-e), as for TGB3 (Fig. 3).

DISCUSSION

Different potexviruses employ somewhat different mechanisms for cell-to-cell movement (Lin et al., 2006). Previous studies have examined intracellular localization and interactions of the TGB proteins of several potexviruses through expression of individual gene fusion constructs by biolistic delivery to epidermal cells or expression from modified viral genomes (reviewed by Morozov & Solovyev, 2003; Verchot-Lubicz, 2005; Verchot-Lubicz et al., 2007). In contrast, we have utilized Agrobacterium-mediated infiltration to deliver TGB fusion constructs throughout the leaf, and, in confirmatory experiments, expressed AltMV TGB3 variants as additional genes from both AltMV and PVX infectious clones. The behaviour of AltMV TGB3 in these assays clearly distinguishes it from those of PVX and WClMV, the potexviruses for which the most detailed prior studies have been carried out.

Neither N- nor C-terminal fusions of AltMV TGB3 showed the ER-localization pattern observed with the PVX TGB3 control, which may assist TGB1 ribonucleoprotein complexes to plasmodesmata for cell-to-cell movement (Ju et al., 2008; Verchot-Lubicz, 2005). AltMV TGB3–GFP expressed from AltMVA TGB3(TGB3–GFP +) was able to complement local movement, and was therefore assumed to localize and function as does native TGB3 within the mesophyll, although lacking functionality for effective systemic movement through the vasculature. However, AltMV TGB3–(GFP or DsRed) and (GFP or DsRed)–TGB3 all localized to chloroplasts; localization was not affected by expression of free TGB2 or TGB3, unlike PVX GFP–TGB3 (Schepetilnikov et al., 2005; Solovyev et al., 2000). PVX GFP–TGB3 and DsRed–TGB3 mainly localized to the periphery of epidermal cells (this study), whereas PVX TGB3–GFP co-localized with replicase at spherical bodies along the ER (Bamunusinghe et al., 2009) and not with chloroplasts.

To account for these differences, we compared predicted characteristics of TGB3 proteins of AltMV and other potexviruses, among which there is significant diversity (Lin et al., 2006). Whereas SignalP identified an SP in both AltMV and PVX TGB3 proteins, Phobius analysis differentiated subclasses of TGB3 proteins, with AltMV-like TGB3 proteins having a predicted N-terminal SP, distinct from the PVX-like transmembrane domain. Many SPs are not cleaved, and uncleaved 'signal anchors' retain proteins in the targeted membrane (Sakaguchi et al., 1992; von...
Heijne, 1988). The AltMV predicted SP is not cleaved, as agroinfiltrated TGB3–GFP(DsRed) and GFP(DsRed)–TGB3 were stable. Phobius may identify a signal anchor chloroplast-targeting signal, as AltMV (but not PVX) TGB3 fusions were directed to the chloroplast.

Deletion or mutation of TGB3 restricts replication of PVX (Lough et al., 2000), WCMV (Lough et al., 1998) and BaMV (Lin et al., 2006) to the inoculated cells, whereas systemic TGB3 complementation in transgenic plants enabled cell-to-cell and systemic movement (Lough et al., 1998). In the case of AltMVATGB3–eGFP, infection spread beyond initially infected cells, but was restricted to the epidermis. Our data indicate that AltMV TGB3 is key for cell-to-cell movement and systemic infection through promoting virus entry to the mesophyll; complementation of AltMVATGB3–eGFP with agroinfiltrated TGB3 facilitated movement throughout the mesophyll and lower epidermis within the agroinfiltrated area. Deletion mutagenesis allowed us to identify VL(17,18) at the C-terminal end of the putative SP as crucial for both chloroplast binding and virus systemic movement.

Substitution VL(17,18)AR abolished the ability of TGB3–DsRed to bind to chloroplasts and ablated movement of AltMVVL(17,18)AR–eGFP from the epidermis to the mesophyll, suggesting a causal relationship between these processes. The importance of mesophyll targeting of AltMV was also demonstrated by FISH assay, showing that the chloroplast membrane is the preferential site for WT virus accumulation, making mesophyll invasion a critical step for virus infection.

Several reports describe virus interactions with chloroplasts, mainly relating to virus replication (Prod’homme et al., 2003; Torrance et al., 2006). Nevertheless, we show here for the first time that AltMV TGB3 is involved in transport between different cell types adjunct to replication. This distinction between AltMV and PVX may be compared with differences between distinct tombusviruses targeting either mitochondria or peroxisomes to form multivesicular bodies (Rubino & Russo, 1998), similar to the chloroplast vesiculation observed with AltMV TGB3 overexpression.

Overexpression of an individual viral protein can shed light on its function or target(s). Differences in the symptoms induced by overexpression of AltMV and PVX TGB3 from AltMV underline the difference between these two proteins; vein necrosis was induced only where AltMV TGB3 was overexpressed. When overexpressed from a PVX vector, symptoms induced by TGB3VL(17,18)AR–His were very similar to those of WT PVX and only functional AltMV TGB3–His was able to induce necrosis in two distinct hosts. Electron microscopy of plants infected with PVX(TGB3AltMV+) revealed distinctive chloroplast membrane vesiculation not seen with WT PVX. Vascular association of TGB3 supports a role in systemic movement, whilst chloroplast vesiculation further supports the localization of fluorescent TGB fusions.

Native TGB3 is presumed to be produced from the same subgenomic (sg)RNA as TGB2, yielding coordinated production of these proteins. In the hordeivirus barley stripe mosaic virus (BSMV), TGB3 is produced in approximately one-tenth of the amount of TGB2 (Donald et al., 1993). However, whilst excessive amounts of BSMV or other hordeivirus-like TGB3s interfere with virus replication (Lauber et al., 2005; Lim et al., 2008), there seems to be no such limitation with potexvirus-like TGB3s (Lim et al., 2006; this study). The ability to overexpress TGB3 mutants in cis to complement a TGB3-defective AltMV should allow further examination of the functions of TGB3 for both local and long-distance movement, and of the differences between AltMV and PVX.

METHODS

Virus isolates and plant material. AltMV isolate SP (AltMV-SP) was isolated from creeping phlox (Phlox stolonifera Sims) cv. Sherwood Purple (Hammond et al., 2006) and maintained in *N. benthamiana* Domino by mechanical transfer. *N. benthamiana* plants were grown in 10 cm pots in a greenhouse at a nominal 22 °C/18 °C with supplementary lighting to extend the photoperiod to 14 h as necessary, or in growth chambers at 22 °C with a 16 h/8 h light/dark cycle. Three- to four-week-old *N. benthamiana* plants were used for virus infection and agroinfiltration.

Construction of infectious AltMV cDNA clones. All primers utilized in this work are shown in Supplementary Table S1, available in JGV Online. Construction of infectious clones AltMV3-1 (mild), AltMV3-7 (severe) and AltMV–eGFP [expressing eGFP from a duplicated sg CP promoter] are described elsewhere (Lim et al., 2016a). To generate AltMV–eGFPACP, the sg promoter, CP and 3′ untranslated region were amplified using NheI and Xhol primers and substituted into *Nhel*/*Xhol*-digested AltMV–eGFP. The start codons of TGB2 and TGB3, and TGB3 aa 17 and 18 were mutated separately to create clones AltMV–eGFPATGB2, AltMV–eGFPATGB3 and AltMV–TGB2VL(17,18)AR–eGFP and AltMV–TGB3VL(17,18)AR–eGFP, respectively, using overlap PCR (Wurch et al., 1998). When the TGB2 start codon was mutated, the TGB1 amino acid sequence was maintained; similarly, the TGB2 amino acid sequence was maintained when the TGB3 start codon was ablated and additional mutations were introduced. To generate a clone overexpressing TGB3, the TGB3 gene was amplified using primers adding *BamHI* and *Nhel* sites at the 5′ and 3′ termini, respectively, and substituted for eGFP in AltMV–eGFP, forming AltMV(TGB3AltMV–His+). A similar clone overexpressing PVX TGB3 was generated by substitution of PVX TGB3 amplified from pPC2S (Baulcombe et al., 1995), forming AltMV(TGB3PVX+). AltMVATGB3 was created as for AltMV–eGFPATGB3. AltMV TGB3 was amplified and inserted in place of eGFP in AltMV–eGFPATGB3 to form AltMVATGB3(TGB3+); AltMVATGB3(TGB3–GFP+), expressing TGB3–GFP as an added gene, was created by replacing eGFP with TGB3–GFP, amplified from pHVLG-TGB3 (see below), into *BamHI/Nhel*-digested AltMV–eGFP. AltMV TGB3 was amplified and inserted as a *BamHI/MluI* fragment into infectious clone PVX-MCS, forming PVX(TGB3AltMV+); PVX-MCS is a derivative of PVX infectious clone pPC2S, described elsewhere (Lim et al., 2010b). PVX-MCS was modified separately to overexpress C-terminally 6 × His-tagged AltMV TGB3 and TGB3VL(17,18)AR–eGFP, forming PVX(TGB3AltMV–His+) and PVX(TGB3VL(17,18)AR–His+), respectively.

Full-length cDNA clones were linearized by using *Xhol* (AltMV clones) or *SpeI* (PVX clones) before in vitro transcription of infectious...
RNA for *N. benthamiana* inoculation, using T7 RNA polymerase as described by Petty et al. (1989). Q-RT-PCR to quantify TGB3 RNA was performed as described by Bae et al. (2006) using TGB3-specific primers.

Agrobacterium infiltration and transient expression constructs. All binary vectors used were derived from pGD (to express free protein), pGDG (GFP–protein fusion) or pGD (DsRed–protein fusion) as described by Goodin et al. (2002). The TGB2, TGB2/3 together, and TGB3 genes of AltMV were amplified and inserted into the Xhol/BamHI sites of appropriate vectors, TGB2 and TGB2/3 were inserted into pGD, forming pG–TGB2 and pGD–TGB2/3, respectively. TGB3 was inserted into pGD (unfused TGB3) and into pGDG and pGDR to form N-terminal fusions (GFP–TGB3, DsRed–TGB3). PVX TGB3 was amplified from pPC2S using primers Xhol-F/BamHI-R and inserted into Xhol/BamHI-digested pGDG and pGDR, forming pG–TGB3PVX and pGD–TGB3PVX. C-terminally fused eGFP was amplified from pEGFP-C1 (Clontech) using primers KpnI/F/BamHI-R and inserted into KpnI/BamHI-digested pGD vector, creating pHVLG. DsRed for C-terminal fusions was amplified from pGDG and inserted as a KpnI/BamHI fragment into pGD, creating pHVLR. TGB3 and deletion or substitution mutants were amplified with appropriate primers and cloned between the Xhol/KpnI or HindIII/KpnI sites of pHVLG and pHVLR, forming pHVLG-TGB3 (GFP) and pHVLR-TGB3 (TGB3–DsRed) derivatives. All mutated sequences were verified by sequencing. Abaxial infiltrations of *N. benthamiana* leaves with *Agrobacterium tumefaciens* were performed essentially as described previously (Lim et al., 2009), applying a final concentration of 0.6 OD600 with constructs mixed in equal proportions where appropriate.

Detection and localization of fluorescent fusion proteins in *N. benthamiana*. Leaf pieces and transverse sections (approx. 0.2 mm) of fresh leaves of *N. benthamiana* were examined with a Zeiss 710 laser-scanning confocal microscope system. An Argon laser was used to excite GFP at 488 nm and emission was monitored at 500–520 nm. DsRed was excited at 568 nm and emission was detected at 570–600 nm. Auto-fluorescence of chloroplasts was detected by using a 670 nm emission filter. Images were observed using an AxioObserver inverted microscope with a 40 x 1.2 NA water immersion Plan Apochromatic objective. DIC and fluorescence images were acquired simultaneously. The Zeiss Zen software package was used to capture images, and Zeiss AxioVision Release 4.8.3 with 4D software was used to construct three-dimensional images and calculate lateral sections from 35–60 optical slices of 1 μm in the Z dimension (Z-stack).

Western blotting. Total protein extracts from infected or agroinfiltrated *N. benthamiana* leaves were obtained by grinding fresh tissue in Smash buffer (Deng et al., 2007) and boiling for 10 min. Protein extracts were run on 12 or 20 % polyacrylamide gels and blotted onto PVDF membranes, followed by visualisation using appropriate antibodies and chemiluminescent detection. AltMV-specific antibody was a gift of Andrew Geering (Geering & Thomas, 1999). Anti-GFP Living Colours monoclonal antibody (Clontech), anti-DsRed Living Colours monoclonal antibody (Clontech) and His tag monoclonal antibody (Sigma) were diluted as recommended by the manufacturers. Detection was by 1:2500-diluted horseradish peroxidase-conjugated goat anti-rabbit (PerkinElmer) or anti-mouse (Thermo) antibodies, with SuperSignal-WestFemto substrate (Thermo).

Localization of viral RNA by FISH. Leaf tissue collected from AltMV-infected *N. benthamiana* seedlings 20 days p.i. was processed to obtain paraffin sections for in situ hybridization, essentially as described by Zhu et al. (2001). Fluorescently labelled RNA probe complementary to the CP ORF of AltMV was prepared by in vitro transcription of linearized plasmid DNA in the presence of Alexa Fluor 488–UTP (Invitrogen). In situ hybridization was performed as described by Zhu et al. (2001), using reagents from Boehringer Mannheim. In brief, dewaxed sections were pre-hybridized in blocking solution and incubated with labelled RNA probe. After washing, sections were mounted in ProLong Gold antifade solution (Invitrogen) and examined by LSCM as described above.

Electron microscopy analysis of thin sections of *N. benthamiana* leaves. Tissue samples (approx. 2 x 1 mm) were excised from infected leaves of *N. benthamiana* and processed for embedding according to Lawson & Heuron (1974). Ultrathin sections were examined with a JEOL 100CX II transmission electron microscope equipped with an HR digital camera system (Advanced Microscopy Techniques Corp.).

Sequence analysis The amino acid sequence of AltMV TGB3 was compared with those of homologues of related viruses by BLASTP analysis (NCBI), and conserved domains were examined by using the CDD option within NCBI (Marchler-Bauer et al., 2007). TGB3 amino acid sequences of AltMV–SP (GenBank accession no. AAX86023.1), PVX (YP_002332932.1), PapMV (AAP52895.1), WClMV (NP_620718.1), FMV (NP_040991.1), BaMV (NP_042586.1), CIYMV (NP_077082.1), PIAMV (NP_620839.1), TVX (NP_702991.1) and ZVX (YP_054405.1) were analysed further using Phobius software (Käll et al., 2004, 2005; EMBl–EBL) to improve discrimination between the hydrophobic regions of a transmembrane helix and those of an SP. Additional comparisons were made using SignalP, TargetP and ChloroP (http://www.cbs.dtu.dk/services/), following the steps proposed by Emanuelsson et al. (2007).

ACKNOWLEDGEMENTS

We wish to thank Michael Reinell for excellent technical assistance. We also thank Peter Moffett for helpful comments and discussion during preparation of the manuscript.

REFERENCES

