Recombination dynamics of human parechoviruses: investigation of type-specific differences in frequency and epidemiological correlates

Correspondence
P. Simmonds
Peter.Simmonds@ed.ac.uk

Human parechoviruses (HPeVs) are highly prevalent RNA viruses classified in the family Picornaviridae. Several antigenically distinct types circulate in human populations worldwide, whilst recombination additionally contributes to the genetic heterogeneity of the virus. To investigate factors influencing the likelihood of recombination and to compare its dynamics among types, 154 variants collected from four widely geographically separated referral centres (UK, The Netherlands, Thailand and Brazil) were typed by VP3/VP1 amplification/sequencing with recombination groups assigned by analysis of 3Dpol sequences. HPeV1B and HPeV3 were the most frequently detected types in each referral region, but with marked geographical differences in the frequencies of different recombinant forms (RFs) of types 1B, 5 and 6. HPeV1B showed more frequent recombination than HPeV3, in terms both of evolutionary divergence and of temporal/geographical indicators of population separation. HPeV1 variants showing between 10 and 20% divergence in VP3/VP1 almost invariably fell into different recombination groups, compared with only one-third of similarly divergent HPeV3 variants. Substitution rates calculated by BEAST in the VP3/VP1 region of HPeV1 and HPeV3 allowed half-lives of the RFs of 4 and 20 years, respectively, to be calculated, estimates fitting closely with their observed lifespans based on population sampling. The variability in recombination dynamics between HPeV1B and HPeV3 offers an intriguing link with their markedly different seasonal patterns of transmission, age distributions of infection and clinical outcomes. Future investigation of the epidemiological and biological opportunities and constraints on intertypic recombination will provide more information about its influence on the longer term evolution and pathogenicity of parechoviruses.

INTRODUCTION

Human parechovirus (HPeV) is a member of the large and expanding family of positive-stranded RNA viruses, the Picornaviridae. Picornaviruses infect humans and a range of mammalian species, typically targeting the gastrointestinal or respiratory tracts with a broad range of disease manifestations and severities. This variability in host interaction is manifested very clearly among human parechoviruses. These
viruses were originally described as echovirus 22 and 23 and classified with human enteroviruses to which they show similarities in clinical presentations and an enterovirus-like cytopathology on virus isolation. However, sequencing of the genome of HPeV has revealed distinct structures of replication and translation elements, substantial sequence divergence of encoded proteins and frequent differences in biological properties (Hyyppä et al., 1992; Stanway et al., 1994). Consequently, they have now been renamed and reclassified into their own genus, Parechovirus (Stanway et al., 2005).

HPeV is a highly prevalent, enterically transmitted virus, usually causing clinically unapparent infections primarily among young children. However, HPeV has been associated with gastrointestinal and respiratory tract symptoms, as well as with occasional cases of encephalitis and flaccid paralysis (Figueroa et al., 1989; Koskineni et al., 1989; Stanway et al., 2000; Joki-Korpela & Hyyppä, 2001). Although differences in host response, and in particular the greater susceptibility of neonates to disseminated sepsis-like illness, account for some of the variability in the outcome of infections, biological differences between variants of HPeV may also contribute significantly to its wide spectrum of clinical presentations.

Human parechoviruses show genetic and antigenic heterogeneity, and a number of distinct HPeV types are known to circulate widely in human populations throughout the world. There are currently a total of eight classified HPeV types and an additional six for which partial genome sequences are available. HPeV types differ from each other by 30–40% in the primary nucleotide sequence and are antigenically distinct. Indeed, the first two types discovered were classified as separate serotypes (echovirus 22 and 23) on the basis of cross-neutralization assays (Wigand et al., 1986; Santti et al., 1999; Lukashev, 2005; Heath et al., 2006; Stanway et al., 2006). Consequently, they have now been renamed and reclassified into their own genus, Parechovirus (Minor et al., 1986; Santti, 1999; Lukashev, 2005; Heath et al., 2006; Stanway et al., 2006). A recent large-scale analysis of complete genome sequences of HPeV identified a number of recombination breakpoints in the genomes of HPeV1, -3, -4, -5 and -6 clustering around the P1/P2 junction and between P1 and the 5′-untranslated region (5′UTR) (Benschop et al., 2008b, 2009; Williams et al., 2009; Zoll et al., 2009), an evolutionary pattern shared among almost all genera of picornaviruses (Minor et al., 1986; Santti et al., 1999; Lukashev, 2005; Heath et al., 2006; Stanway et al., 2006). The findings of substantial differences in phylogenetic groupings in different parts of the HPeV genome, although how and why this occurs remains uncertain.

In the current study, we have created a large dataset of 154 new paired sequences from the structural (VP3/VP1) and non-structural (3Dpol) regions of HPeV variants circulating over the last 5 years in four widely geographically spaced referral centres in Europe, Southeast Asia and South America. Combined with previously published sequences from HPeV variants circulating up to 15 years ago in these and other geographical regions, we have been able to conduct a large-scale investigation of the dynamics of recombination in different HPeV types, and the evolutionary and epidemiological factors underlying its occurrence. The findings of substantial differences in substitution rate and recombination frequency of HPeV1 and HPeV3 provide tantalizing new insights into their differing molecular epidemiologies and clinical associations of infection.

RESULTS

HPeV type and 3Dpol clade assignments

Phylogenetic analysis of the VP3/VP1 region of the 170 study sequences identified 105 type 1, 41 type 3, six type 4, eight type 5, seven type 6, two type 10 and one type 14 sequences from the four study centres (Fig. 1a). The type 1 sequences could be further assigned into three type 1A and
102 type 1B sequences as proposed previously (Benschop et al., 2009), with the type 1B sequences used for the recombination analysis described in the rest of the study. Type 1B was the most common type detected in all four referral centres, followed by type 3 and more variable detection of types 4, 5 and 6. Three variants from Thailand additionally were assigned as types 10 and 14 (see Supplementary Table S1, available in JGV Online). For each sample, sequences from the 3Dpol region were obtained and phylogenetically analysed to identify recombination groups (Fig. 1b). 3Dpol groupings were assigned by identifying bootstrap-supported clades. Groups identified in this manner showed a minimum of 5.5% nucleotide sequence divergence from each other, a threshold corresponding to a naturally occurring minimum value in the distribution of pairwise distances between 3Dpol sequences (Fig. 2). This definition of clades corresponds to that used previously for assigning recombination groups (Benschop et al., 2008b). However, inspection of the distribution and of the phylogenetic tree revealed a second level of variability, with several clades being much more divergent from each other with a threshold divergence of approximately 0.155 dividing them. However, the distribution (and tree) was dominated by the large number of type 1 sequences, and the rather few available pairwise distance values within genotypes 4-, 5- and 6-associated clades (filled bars, labelled ‘other’ in Fig. 2) indicated frequent distances at the low point of the type 1 distribution (different clades). For the analysis in the rest of the paper, sequences were considered to be in the same or different clades based on the lower threshold value.

The 170 study sequences could be assigned to a total of 35 different clades for the main 1B, 3 and 4–6 types (Figs 1 and 3) and a further four for the rarer types (AV, D, T in type 1A variants and U in type 14, whilst the type 10 variants were BA; Fig. 1). Most 3Dpol clades were associated with specific genotypes (grey-filled boxes in Fig. 3); for example, 25 were exclusively or most commonly associated with type 1B variants analysed in the study and three with genotype 3. However, some 3Dpol groups were associated with multiple types, including the finding of BD in genotypes 1B and 6, J with genotypes 1B and 4, A with genotypes 1B and 3, and BA with genotypes 1B, 5 and 10.

There were marked geographical differences in the distribution of different recombinant forms (RFs). Although type 1B sequences were the most commonly detected type in all four centres, variants from Thailand and Brazil showed almost entirely distinct distributions of RFs from those of the UK and The Netherlands. Even the latter two countries showed substantial differences in 3Dpol clade frequencies (despite sampling over a similar study period) with only clades D and AD from the 21 genotype 1-associated clades in the two countries overlapping in geographical distribution. On the other hand, type 3 sequences were almost invariably in clade A in both countries. The number of clades per sequence provides an approximate measure of the diversity of each HPeV type: values of 0.27 and 0.53, respectively, for type 1 and types 4–6 combined were substantially higher than the 0.071 for type 3, where 41 sequences fell into only three clades.

Differences in recombination frequency among HPeV types

The evidence for less frequent recombination in HPeV3 compared with other HPeV types was formally investigated by separating out epidemiological and evolutionary factors that may also influence recombination frequency (Fig. 4). An indicator of the period of evolutionary separation of variants was the degree of accumulated sequence divergence in the VP3/VP1 region of the genome. Comparison of very recently diverged type 1 variants (pairwise distances in VP3/VP1 of <0.005 from each other) revealed a low proportion of pairwise comparisons between sequences with 3Dpol sequences assigned to different groups (16%). In contrast, the more divergent type 1 sequences invariably contained different clades from each other, providing evidence for inevitable recombination in this extended period of divergent evolution. Dividing evolutionary distances into six bins revealed a consistent relationship between divergence and the occurrence of recombination (Fig. 4a).

There was also a relationship between sequence divergence and recombination frequency in type 3 sequences, but recombination occurred after a substantially longer period of divergent evolution; for sequences showing between 5 and 10% divergence, approximately 30% were recombinant, compared with almost invariable recombination between type 1 variants in this divergence range. Insufficient numbers of sequences of types 4–6 were available to include them in the analysis, but the high proportion of RFs relative to the number of variants sequenced (Fig. 3) suggested frequent recombination comparable to that of type 1.

To provide a time calibration for this analysis, substitution rates for this region of VP3/VP1 were determined by a Bayesian maximum-likelihood procedure for HPeV types 1B and 3 (Table 1). Variability in this region occurred overwhelmingly at synonymous sites (dS) ratios of 0.0063 and 0.0037), fitting the assumption of neutral sequence divergence required by the analysis method. The substitution rate for HPeV1B was 7.2 × 10⁻³ substitutions per site per year, over 2.5 times faster than HPeV3 (2.8 × 10⁻³ substitutions per site per year). Despite the greater diversity within the type 1B clade, the most recent common ancestor (MRCA) of this type was approximately contemporary to that of HPeV3 (24.0 and 22.7 years ago, respectively). Both viruses thus have very recent predicted times of emergence and spread. Applying these rates to compare recombination dynamics between these types, we estimated the divergence of VP3/VP1 sequences at 50% recombination points for HPeV1 and HPeV3 (where half of pairwise comparisons between variants within each type shared the same 3Dpol clade; Fig. 4a). For HPeV1, this fell
in the divergence range of 0.05–0.1 distance range (estimated at 0.06 by interpolation). Using the substitution rate for HPeV1 (Table 1), this predicted a ‘half-life’ of an RF of 4.1 years \[3.1–6.3\] years using the highest posterior density (HPD) interval of the substitution rate. The greater 50\% divergence point (estimated at 0.125; Fig. 4a) and the slower substitution rate for HPeV3 (Table 1) combined to predict a much longer half-life than type 1 (22 years; range 15–37 years).

Epidemiological markers of separation (sample year difference and geographical distance) showed similar differences in recombination frequency between type 1 and 3 variants (Fig. 4b, c). For type 1, there was evidence of frequent co-circulation of different RFs within the same city and among samples collected in the same year (72 and 79\%, respectively, for recombination frequencies on pairwise comparison). These frequencies approached 100\% for temporally and geographically more widely spaced samples. There was, in marked contrast to HPeV1, evidence for the prolonged circulation of RFs of HPeV3, with only one-third of comparisons of variants sampled over 10 years apart showing different recombination groups (Fig. 4b). This observation is consistent with the long (22-year) half-life for RFs predicted for HPeV3 using divergence and substitution rates.

DISCUSSION

Recombination in parechoviruses

In agreement with previous studies (Benschop et al., 2008b, 2009; Williams et al., 2009; Zoll et al., 2009), the uncoupling of phylogeny relationships between the structural and non-structural gene regions (Fig. 1) provides convincing evidence for the occurrence of recombination in parechoviruses. Although we have not sought to identify the position between VP3/VP1 and 3Dpol where the recombination events occurred, the marked differences in phylogenetic groupings between genome regions, and in particular the dispersal of monophyletic groups in VP3/VP1 (corresponding to HPeV types) into a plethora of intermingled clades in the 3Dpol region, cannot plausibly be explained by any other mechanism. The discordance in phylogenetic relationships across the HPeV genome resembles that of many other picornaviruses. For example, our previous phylogenetic analysis of 3Dpol sequences from a worldwide collection of 318 isolates of the human enterovirus, echovirus 30, revealed the existence of 38 phylogenetically distinct clades, interspersed with sequences from other species B enterovirus serotypes (McWilliam Leitch et al., 2009).

The findings are consistent with previous descriptions of the mosaic nature of HPeV complete genome sequences and the mapping of recombination breakpoints most commonly to the 2A region (Benschop et al., 2009; Williams et al., 2009; Zoll et al., 2009), and observation of inconsistent phylogenies between VP1 and 3Dpol regions of HPeV1 but not HPeV3 variants (Benschop et al., 2008b). With the much larger dataset in the current study, evidence has been obtained for recombination in all five of the commonly circulating HPeV types in the four study countries and among published sequences.

Identification of RFs

Designation of HPeV RFs was dependent on the identification of distinct 3Dpol clades. In the current study, we have formalized the approach adopted in a previous investigation of incompatibility between VP1 and 3Dpol
regions (Benschop et al., 2008b) through construction of bootstrap replicated trees and in analyses of the distribution of pairwise distances between sequences in this genomic region (Figs 1b and 3). Phylogenetic analysis revealed a strongly hierarchical structure with a series of approximately equally divergent, bootstrap-supported clades used for classification of HPeV variants into RFs. Pairwise distances between groups were typically in the range of 0.08–0.13, distinct from intra-group distances of 0.02–0.04. At this stage, it is difficult to hypothesize what

![Image](image.png)

Fig. 3. Assignment of samples from the four study centres into types 1 and 3–6 (left hand columns) and recombination groups (BD–AY) based on phylogenetic analysis of the 3Dpol region (totals shown). Groups have been ordered by frequency of occurrence (from left to right); shaded grey boxes indicate 3Dpol groups associated with each type. Variants with 3Dpol groups more commonly found in another type are indicated by filled boxes.

![Image](image.png)

Fig. 4. Evolutionary and epidemiological factors influencing the frequency of recombination in HPeV1B and HPeV3. Pairwise comparison of the study sequences and other available HPeV sequences recorded the mean frequency of recombination in the different categories of sequence divergence (a), time between sampling (b) and geographical separation of the samples (c).
evolutionary events lie behind the tree structures of the 3Dpol regions of HPEV or human enteroviruses, their timescale for divergence or the underlying basis for their disjoint relationship with structural gene sequences. Nevertheless, the identification of RFs made possible by clade assignments provides the means to identify recombination events and differentiate clearly between different circulating virus populations.

3Dpol groups associated with one genotype may be observed in others, particularly in those occupying the same geographical region. Thus, type 1 and type 6 variants in the Edinburgh samples frequently shared 3Dpol groups and with these types in Thailand. A similar occurrence was observed for HPEV3, where the majority of samples had a group A 3Dpol sequence, one that spilled over into Dutch type 1 variants. These and other observations of intertypic recombination suggest that gene exchange between any pair of HPEV types can potentially create viable RFs. However, the extent to which hybrid viruses after a recombination event require further adaptive changes to gain full wild-type fitness and transmissibility remains unclear. Direct observational data on the recombination process and information on the effective population sizes and selection pressures operating on parechoviruses in nature are currently largely or entirely lacking.

Factors influencing the likelihood of recombination

The main correlate determining the likelihood of recombination was sequence divergence in VP3/VP1 (Fig. 4a). Divergence in this structural gene region provides an indication of the length of time any pair of viruses has been evolving apart from their last common ancestor. Unexpectedly, however, there was a marked difference in substitution rates calculated by BEAST between types 1 and 3 that complicated the calculations of the lifespans of their RFs. Of the two parechovirus types, the substitution rate for HPEV1 (7.2 \times 10^{-3} substitutions per site per year) was more comparable to those determined previously in the structural gene regions for other picornaviruses, specifically human enteroviruses E30 (8 \times 10^{-3}), EV71 (13.5 \times 10^{-3}), poliovirus (9 \times 10^{-3}) and EV70 (5 \times 10^{-3}) (Takeda et al., 1994; Kew et al., 1995; Brown et al., 1999; McWilliam Leitch et al., 2009) and foot-and-mouth disease viruses (4 \times 10^{-3}–14 \times 10^{-3}; summarized in Cottam et al., 2006). These contrast with the substantially lower substitution rates for parechoviruses determined in the P1 capsid and VP1 regions (2.2 \times 10^{-3} and 2.8 \times 10^{-3} substitutions per site per year; Faria et al., 2009), closer to that determined for HPEV3 in the current study. However, this accuracy of the published estimate is potentially compromised by being based on a combined dataset of all HPEV types, each of which may show different substitution rates (as demonstrated for HPEV1 and HPEV3). Indeed, this may account for the substantial rate heterogeneity recorded among tree branches by BEAST analysis, the high coefficient of variation of 0.29 and 0.41 for the two genome regions (P1 and VP1) and rejection of a strict molecular clock (Faria et al., 2009).

The mean half-lives calculated for RFs of HPEV1 and HPEV3 can only be regarded as approximate and are in any case likely to be variable and influenced by specific epidemiological circumstances. Nevertheless, the greater than fivefold difference in their predicted lifespans [4 and 22 years, respectively, with non-overlapping confidence (HPD) intervals] fits well with the epidemiological correlates of their recombination frequencies (Fig. 4b, c). In particular, observations that the same group A RFs of HPEV3 were detected throughout the period from 1994 to 2008 and the much more transient existence of HPEV1 RFs is consistent with these half-life predictions. The only comparable published analysis of recombination frequencies in picornaviruses described a 3–5-year turnover of individual RFs of the human enterovirus E30, based on longitudinal sampling in Europe (McWilliam Leitch et al., 2009), and, using the same calculation method on the published data, a predicted half-life of 3.4 years, observations much more similar to HPEV1 than HPEV3. Similar also to E30 was the evidence for widespread geographical distributions of individual HPEV1 recombinants; the observation of substantial overlap in RF distributions between Edinburgh and Amsterdam suggests a shared transmission network that did not, however, extend to Thailand or Brazil. In the case of E30 (McWilliam Leitch et al., 2009), RFs showed highly overlapping distributions in northern and western Europe (and Australia), whilst contemporary variants circulating in Southeast Asia were entirely distinct.

Although we do not understand the mechanisms underlying the differences in the evolutionary process of HPEV1 and HPEV3, and we have insufficient recombination data from other HPEV types for comparison, the marked differences

<table>
<thead>
<tr>
<th>Type</th>
<th>Divergence*</th>
<th>dS/dS*</th>
<th>Substitution rate (×10^{-3})†</th>
<th>MRCA†</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPEV1B</td>
<td>0.097</td>
<td>0.0063</td>
<td>7.24 (4.75–9.61)</td>
<td>1985 (1980–1990)</td>
</tr>
<tr>
<td>HPEV3</td>
<td>0.033</td>
<td>0.0037</td>
<td>2.83 (1.69–4.17)</td>
<td>1987 (1980–1992)</td>
</tr>
</tbody>
</table>

* dS/dS Ratio of non-synonymous to synonymous substitutions per site, calculated using Jukes–Cantor corrected distances. † Mean value with HPD interval in parentheses.

Table 1. Estimates of rates of sequence change of the VP3/VP1 region in HpeV1B and HPEV3
in rates and recombination frequencies offers an intriguing
link with the known epidemiological and biological
differences between these HPeV types. Recent data indicate
different age distributions, seasonality and infection out-
comes between HPeV1 and HPeV3 that may underlie or
result from their differences in evolutionary dynamics. One
example, and potentially connected to their difference in
substitution rates, is the observation of a biannual pattern of
infection in HPeV3, with infections almost entirely
restricted to the summer months in even-numbered years
in The Netherlands, the UK and probably elsewhere in
Europe (Benschop et al., 2006b, 2008a; van der Sanden
et al., 2008; Harvala et al., 2009). In contrast, HPeV1 (and
other types) recurs annually with peaks of incidence in the
autumn (Benschop et al., 2006b; van der Sanden et al.,
2008), similar to the seasonal pattern of human enter-
oviruses. HPeV3, along with the less prevalent
parechovirus types, may therefore experience much more
extreme population contractions and periods of inactive
environmental persistence during its transmission chain
that would reduce its long-term substitution rate.

HPeV3 differs also in its clinical presentations, being
specifically associated with neonatal sepsis and a potentially
greater capacity to infect systemically and target the central
nervous system (Abed & Boivin, 2005; Boivin et al.,
2009; Abed & Boivin, 2006; Benschop et al., 2006b; van der
Sanden et al., 2008; Harvala et al., 2009). It has been
suggested that this difference may arise either through an
absence of protective maternal antibody (although there is
no data to show whether sepsis cases occur specifically in
children of seronegative mothers) or through biological
differences arising in the use of a different cellular receptor
for entry. HPeV3 differs from HPeV1 and most other types
by lacking the RGD motif in VP1 required for integrin
binding (Ito et al., 2004; Benschop et al., 2008a), an entry
mechanism shared with a number of other picornaviruses.
It has indeed been suggested that the different cellular
tropism conferred on type 3 through the use of alternative
cellular receptors may be a significant factor limiting
recombination with other HPeV types (Benschop et al.,
2009). Notwithstanding this, however, we have found
evidence for recombination between HPeV3 and HPeV1
(several type 1 variants from Amsterdam had group A
3Dpol sequences that are found most commonly in
HPeV3; Fig. 3). Direct in vitro investigation of the
compatibility and constraints accompanying intertype
recombination in parechoviruses would be of considerable
value in resolving these unresolved biological issues.

In the longer term, investigations focusing on the
relationship between the biology/pathogenesis of HPeV
with its molecular epidemiology, recombination dynamics
and evolution promise to provide important new insights
into the nature of parechovirus infections and their
prevention. This multidisciplinary approach will be of
considerable value in the exploration of variability in
circulation and outcome of other viral infectious diseases.

METHODS

Samples. HPeV-positive isolates were collected from diagnostic
specimens referred to the Specialist Virology Laboratory, Royal
Infirmary of Edinburgh, UK, and made available through the
specimen archive. Samples comprised respiratory (n=37), faecal
(n=26) and cerebrospinal fluid (CSF; n=10) specimen types. Further
faecal and CSF samples were made available for the study from the
Academic Medical Centre, Amsterdam, The Netherlands (n=48),
and faecal and respiratory samples from Bangkok, Thailand (n=25).
Sequences obtained from faecal samples from Brazilian subjects
(n=8) and all available published nucleotide sequences from
GenBank downloaded in August 2009 (31 in total) supplemented
these data. A full list of the locations, sample dates and sources for
the sequences used in the study is provided in Supplementary Table S1.
Positive controls comprised serial dilutions of cell culture supernatant
from two Dutch isolates of HPeV-1 (AMS-152478) and HPeV-3
(AMS-252277). RNA was extracted from controls and clinical samples
using a Qiagen QIAamp Viral RNA kit, as described by the
manufacturer.

Isolates were named using the following convention: two-letter
country code/isolate number/two-letter city abbreviation/3Dpol
digit/2 digits of the year of collection, followed by a
decimalized fraction expressing the month of collection, if known.
(e.g. GB/Faec-1406/ED/A/08.515 for faecal sample 1406 from
Edinburgh, Great Britain (GB), isolated in July 2008 and belonging
to the 3Dpol clade A). 3Dpol clade designations were based on the
results of phylogenetic analysis of this region (see below). Cities of
origin were used to calculate the geographical separation of samples.

Amplification of the VP3/VP1 and 3Dpol regions. The structural
gene region was amplified as described previously (Harvala et al.,
2008). For the 3Dpol region, RT-nested-PCRs were performed using
HPeV-specific primers designed to amplify a 700 nt region of the
3Dpol gene corresponding in position to that used in previous
analyses of recombination (Benschop et al., 2008b). Combined
reverse transcription and first-round PCR used the Superscript III
One-step RT-PCR system (Invitrogen) with the following first-round
primers: 5’-GTNTAYARGATGATHATGATGGARA-3’ (outer sense,
nt 6422–6446, numbered using the HPeV-1 Harris strain as a
reference sequence; GenBank accession no. I02971) and 5’-
YTTARTCAACACCATGGGGCAAYA-3’ (outer antisense, nt 7253-
7275). Thermal cycling for the first RT-PCR comprised heating at
53 °C for 1 h; 20 cycles of 53
u
C for 1 min 45 s; and final extension
heating at 70 °C for 15 min and 94 °C for 2 min; 40 cycles of 94 °C
for 30 s, 50 °C for 30 s and 68 °C for 1 min 45 s; and final extension
at 68 °C for 5 min.

One microlitre of product was amplified in a second-round PCR
using the following primers: 5’-GAYTTGCACCTTATGATYAYSGC-3’
(inner sense, nt 6512–6534) and 5’-ATNACMACWCTATA-
CATCACCAC-3’ (inner antisense, nt 7221–7243) with GoTaq DNA
polymerase (Promega) in a 20 µl reaction volume with the following
cycling conditions: 30 cycles of 94 °C for 18 s, 50 °C for 21 s and
72 °C for 90 s, with a final extension at 72 °C for 300 s and then at
25 °C for 600 s.

Amplicons were sequenced directly using a BigDye Terminator Cycle
Sequencing kit (ABI) and the inner sense primers. Nucleotide
sequences were annotated and aligned using the Simmonics

Evolutionary analysis. Phylogenetic trees were constructed by
the neighbour-joining method from 1000 bootstrap samplings of
maximum-composite-likelihood (MCL) distances, using the MEGA
4.0 software package with pairwise deletion for missing data. A Bayesian
coalescent algorithm implemented in the Bayesian evolutionary
ACKNOWLEDGEMENTS

The authors are grateful to Gillian Fievel and staff at the Microbiology Laboratory, Western General Hospital, Edinburgh, UK, for faecal surveillance samples and to Elly Gaunt, Kate Templeton and Carol Thomson for providing samples, data and other virus testing results from the respiratory sample archive. We would also like to thank Andrew Rambaut, Institute of Evolutionary Biology, University of Edinburgh, UK, for useful discussion. T. C.’s laboratory visit to Edinburgh was funded by the Royal Golden Jubilee PhD Program, the Thailand Research Fund, the Centre of Excellence in Clinical Virology, and the Graduate School, Chulalongkorn University, and the Commission on Higher Education, Ministry of Education, Thailand.

REFERENCES

http://vir.sgmjournals.org

