Molecular evolutionary dynamics of Ross River virus and implications for vaccine efficacy

Anita Jones,1 Kym Lowry,1 John Aaskov,1 Edward C. Holmes2,3 and Andrew Kitchen2

1Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Brisbane 4059, Australia
2Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, USA
3Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA

Ross River virus (RRV) is a mosquito-borne member of the genus Alphavirus that causes epidemic polyarthritis in humans, costing the Australian health system at least US$10 million annually. Recent progress in RRV vaccine development requires accurate assessment of RRV genetic diversity and evolution, particularly as they may affect the utility of future vaccination. In this study, we provide novel RRV genome sequences and investigate the evolutionary dynamics of RRV from time-structured E2 gene datasets. Our analysis indicates that, although RRV evolves at a similar rate to other alphaviruses (mean evolutionary rate of approx. 8×10^{-4} nucleotide substitutions per site year^{-1}), the relative genetic diversity of RRV has been continuously low through time, possibly as a result of purifying selection imposed by replication in a wide range of natural host and vector species. Together, these findings suggest that vaccination against RRV is unlikely to result in the rapid antigenic evolution that could compromise the future efficacy of current RRV vaccines.

INTRODUCTION

Ross River virus (RRV) is an alphavirus that infects a wide range of vertebrate hosts, including marsupials, equids, rodents, birds and fruit bats, and has multiple mosquito vectors, including several Aedes species (reviewed by Russell, 2002). Of the natural hosts, only humans and horses are known to develop symptoms (Doherty et al., 1963, 1972; Azuolas et al., 2003). The disease in humans is known as epidemic polyarthritis (EPA) (Shope & Anderson, 1960) and is characterized by polyarthralgia in the small joints, principally of the hands and feet, as well as fever, rash and a range of other non-specific signs and symptoms. Patients may be incapacitated for several weeks after infection, but symptoms diminish in severity in the ensuing 30–40 weeks, leading to a full recovery. Up to approximately 7800 cases are reported annually from Australia (Australian Department of Health and Ageing, 2009) and an epidemic of RRV infection in the Pacific in 1979 and 1980 resulted in tens of thousands of clinical infections (Aaskov et al., 1981; Rosen et al., 1981; Tesh et al., 1981). Importantly, the Pacific epidemic of 1979–1980 suggests strongly that RRV is not dependent on purely sylvatic transmission cycles, and that urban transmission cycles are both possible and expected.

Recently, there has been considerable interest in developing a vaccine against RRV infection (Yu & Aaskov, 1994; Aaskov et al., 1997; Kistner et al., 2007) as there is no cure for EPA, because RRV infections appear to confer lifelong immunity against a second clinical infection (Fraser, 1986) and because EPA has been estimated to cost the Australian health system more than US$10 million annually in direct medical costs (Aaskov et al., 1998), with millions more spent on mosquito control. Effective vaccination, whether by live-attenuated virus or inactivated virus, such as the formaldehyde-inactivated virus vaccine currently in development (Kistner et al., 2007), requires that circulating viruses are antigenically similar to the vaccine strain. However, this might not be the case over time if the virus population undergoes rapid antigenic evolution, so that continual vaccine escape mutations allow only transient cross-immunity, as has been documented for human influenza A virus (e.g. Fitch et al., 1991; Rambaut et al., 2008). Although such powerful and continuous positive selection has not been identified in vector-borne RNA viruses, which also seem subject to relatively strong selective constraints (Woelk & Holmes, 2002), instances of periodic adaptive evolution have been recorded in the mosquito-vectored dengue viruses (Bennett et al., 2003; Twiddy et al., 2002), which infect humans and exist...
RESULTS AND DISCUSSION

The nucleotide sequences of the non-coding regions of RRV, particularly the 5’ untranslated region (UTR) and the UTR preceding the structural protein genes, were highly conserved, with only minor variations found in the human isolate (QML1) and mosquito strains T48 and NB5092. The 3’ UTRs of isolates T48 (mosquito), 2975B, 2982B, 3078B (birds) and QML1 (human) each contained the four-repeat nucleotide sequences described previously (Faragher & Dalgarno, 1986). Both isolates from wallabies (8961W and 9057W) had a 35 nt deletion after nt 54 of the 3’ UTR that removed the first 22 nt from repeat sequence III, and which has been described previously (Faragher & Dalgarno, 1986). In addition, there were single (T48, 2982) and double (QML1) nucleotide deletions in the same region (−11 and −11, −12, respectively) of the 23 nt putative promoter for negative-strand RNA synthesis (Kuhn et al., 1990), which immediately precedes the poly(A) tail of the genome. Finally, the poly(A) tail varied in length from 29 nt (2982B) to 63 nt (T48).

RRV evolutionary rate and population dynamics

The mean rate of nucleotide substitution for RRV, calculated by using the sampling dates of the partial E2 gene sequences, was 8.08×10^{-2} nucleotide substitutions per site (subs/site) year$^{-1}$, with a 95% highest probability density (HPD) of 3.97–12.70×10^{-4} subs/site year$^{-1}$. Importantly, these results are consistent when estimated by using a wide range of nucleotide-substitution, molecular-clock and demographic models (Table 1; complete results of these analyses, as well as marginal likelihoods, are presented in Supplementary Table S1, available in JGV Online). Our estimate is consistent with both rate estimates of closely related alphaviruses (e.g. approx. 1×10^{-3} subs/site year$^{-1}$ for Chikungunya virus; Cherian et al., 2009) and other vector-borne RNA viruses (Hanada et al., 2004; Jenkins et al., 2002). These results require a reassessment of previous assumptions that RRV may evolve slowly (Sammels et al., 1995) and highlight the importance of independent estimates of substitution rates.

Our coalescent analysis of the 61 partial E2 gene sequences produced a Bayesian skyline plot, which traces relative

<table>
<thead>
<tr>
<th>Nucleotide-substitution model</th>
<th>Clock model</th>
<th>Demographic model</th>
<th>Marginal likelihood (ln)†</th>
<th>TMRCA (years)</th>
<th>Mean substitution rate (subs/site year$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTR + $\Gamma_4 + 1$</td>
<td>Relaxed (log-normal)</td>
<td>Bayesian skyline plot</td>
<td>-647.97</td>
<td>54.5 (45.0–79.0)</td>
<td>8.13×10^{-4} (3.87–12.6×10^{-4})</td>
</tr>
<tr>
<td>GTR + $\Gamma_4 + 1$</td>
<td>Strict</td>
<td>Bayesian skyline plot</td>
<td>-648.28</td>
<td>53.4 (45.0–70.7)</td>
<td>8.55×10^{-4} (4.50–12.9×10^{-4})</td>
</tr>
<tr>
<td>GTR + $\Gamma_4 + 1$</td>
<td>Relaxed (log-normal)</td>
<td>Constant</td>
<td>-649.44</td>
<td>62.4 (45.0–89.2)</td>
<td>6.91×10^{-4} (3.44–10.9×10^{-4})</td>
</tr>
<tr>
<td>GTR + $\Gamma_4 + 1$</td>
<td>Strict</td>
<td>Constant</td>
<td>-650.27</td>
<td>58.8 (45.0–79.9)</td>
<td>7.45×10^{-4} (3.85–11.4×10^{-4})</td>
</tr>
<tr>
<td>HKY</td>
<td>Strict</td>
<td>Constant</td>
<td>-653.09</td>
<td>59.1 (45.0–79.7)</td>
<td>6.78×10^{-4} (3.58–10.4×10^{-4})</td>
</tr>
</tbody>
</table>

*GTR, General time-reversible nucleotide-substitution model with six reversible nucleotide substitution-rate categories; Γ, gamma distribution of between-nucleotide sites model of substitution-rate variation; 1, proportion of invariant sites model of substitution-rate variation; HKY, Hasegawa–Kishino–Yano substitution model with two reversible nucleotide substitution-rate categories (transitions and transversions).
†Natural log (ln) of the marginal likelihood.
genetic diversity through time, revealing that the diversity of RRV has been remarkably low over time (Fig. 1). Conservatively estimating significant changes as the occurrence of non-overlapping 95% credible intervals, we saw no significant changes in the genetic diversity of RRV over time, despite at least one well-documented RRV epidemic (Aaskov et al., 1981; Rosen et al., 1981; Tesh et al., 1981). This is supported by the lack of statistical preference for either Bayesian skyline or constant demographic models compared with each other (Table 1).

Furthermore, the estimated mean time to the most recent common ancestor (TMRCA) of the sampled RRV sequences was only 55 years (95% HPD, 45–79 years), which is consistent with the low levels of genetic diversity observed in RRV over the past several decades (reviewed by Russell, 2002). Together, these results suggest that the genetic diversity of RRV is, and has been, lower than that of some other arboviruses, such as the flaviviruses dengue virus (Dunham & Holmes, 2007) and yellow fever virus (Bryant et al., 2007), despite their broadly equivalent rates of nucleotide substitution. Importantly, the 17D yellow fever vaccine has retained its efficacy and has not led to antibody-escape mutations, despite the greater genetic diversity of yellow fever virus populations and >60 years of use (Barrett, 1997; Monath, 1999). Interestingly, the genetic diversity of RRV is also slightly lower (although with overlapping 95% HPDs) than that observed in a closely related alphavirus, Chikungunya virus (Cherian et al., 2009), suggesting that similar mechanisms might underlie both. Consistent with this, the TMRCA of the sampled RRV sequences was rather more recent than that of Chikungunya virus (55 years for RRV cf. 129 years for Chikungunya; Cherian et al., 2009). This suggests either that the effective population size of the natural reservoir of RRV is smaller than that of Chikungunya, resulting in a more rapid turnover of genetic diversity in RRV by genetic drift, or that positive selection is driving the more rapid turnover of diversity in RRV.

Phylogenetic and geographical structure of RRV

The maximum clade credibility (MCC) phylogeny for RRV (Fig. 2), which summarizes the posterior distribution of trees produced from the BEAST analysis, displays substantial geographical and temporal structure. Most notably, this tree reveals the presence of distinct eastern and western Australian RRV lineages (geographical origins identified by colours), as well as the loss of a north-east Australian lineage. The fact that the lost lineage has not been sampled since 1977 and has been replaced in north-east Australia by another lineage suggests that, now, it either is extinct or has been reduced to a very low frequency in the RRV population. The loss of a lineage from a specific geographical distribution without a significant decrease in the overall genetic diversity of RRV (see Fig. 1) suggests that the population dynamics of RRV may differ between geographical regions. Furthermore, the basal location of sequences from north-east Australia (i.e. Queensland), combined with the continued sampling of RRV in north-east Australia from a single lineage and the relative geographical specificity of the western Australian lineage, suggests that (i) the present diversity of RRV probably originated in Queensland, and (ii) most migration of RRV within Australia is from east to west. Both of these results support epidemiological data (e.g. higher rates of RRV infection in Queensland than in other Australian provinces; Australian Department of Health and Ageing, 2009) that together support Queensland as the historical source for RRV in Australia.

Our tests of the association between the geographical origin and phylogenetic relationships of the sampled RRV sequences revealed significant associations within the tree as a whole [association index (AI), $P<0.0001$; parsimony score (PS), $P<0.0001$] and with respect to all geographical regions [monophyletic clade size (MC), $0.03<P<0.001$ except the Pacific Islands (MC, $P=1.0$)]. Hence, clear spatial structure exists within RRV populations, particularly between eastern and western Australia, confirming the results of an earlier study of RRV using distance methods (Sammels et al., 1995). Notably, these results indicate that the steady accumulation of mutations and high turnover of RRV diversity (evidenced by the high substitution rate, loss of a lineage and the recent TMRCA) characterized in these analyses are occurring simultaneously in distinct RRV populations not connected routinely by extensive gene flow.
Selection pressures on RRV

Both natural selection and genetic drift can, individually or in combination, reduce the genetic diversity within a population. It is therefore possible that antigenic drift and recurrent selective sweeps have reduced genetic diversity in RRV populations. Strong temporally structured phylogenies, such as that observed here (Fig. 2), are often the hallmark of continuous selection pressure (Grenfell et al., 2004). However, the mean dN/dS ratio in the set of 61 RRV E2 protein sequences analysed here was 0.25, indicating that this region is largely evolving under weak purifying selection. Analyses to determine which, if any, codons in this region were evolving under positive selection failed to identify any under models that consider all [fixed effect likelihood (FEL); P>0.05] or only internal (IFEL; P>0.05) branches. Furthermore, analysis of the RRV genome dataset produced estimates of mean dN/dS for each gene in the RRV genome (non-structural proteins 1–4, envelope glycoproteins 1–3, C protein and 6K protein) that supported relatively stronger purifying selection acting across the RRV genome (0.04<dN/dS<0.15), with no sites under significant positive selection [single likelihood ancestor counting (SLAC) model, P>0.05].

These signatures of purifying selection are consistent with previous studies demonstrating constraints on arbovirus evolution produced by simultaneous selection for replication in two very different hosts (i.e. a range of vertebrate and mosquito hosts; Coffey et al., 2008; Scott et al., 1994; Woelk & Holmes, 2002). Importantly, such selective constraints are expected to limit the coding diversity of RRV and possibly constrain RRV’s response to selective pressures imposed by vaccination of human hosts. However, it is important to recall the limited sampling undertaken in this study and its possible effects on the conclusions drawn. For example, only five sequences were isolated from the 1979–1980 epidemic of RRV in several of the Pacific Islands, so that it is difficult to determine whether adaptive evolution occurred during this outbreak. Sampling of RRV more densely in time is clearly required to investigate the correlation of RRV diversity with historical epidemics in humans (e.g. Aaskov et al., 1981; Rosen et al., 1981; Tesh et al., 1981), with the general trend of increasing numbers of human infections (e.g. Boughton et al., 1984; Hawkes et al., 1993; Australian Department of Health and Ageing, 2009), as well as the strength of selection acting on this virus.

Collectively, our findings indicate that, whilst RRV is evolving rapidly, its observed genetic diversity is consistently low through time and has a recent origin. This is possibly due to constraints stemming from a life cycle involving replication in distinct hosts and small natural host populations, rather than antigenic drift or recurrent selective sweeps. Importantly, it is likely that these constraints limit the probability that RRV could generate enough antigenic diversity to escape vaccine-induced immunity. This is supported by historical observations of lifelong immunity provided by natural RRV infection of humans (Fraser, 1986). In the absence of substantial and unforeseen changes in the molecular evolution of RRV, our analyses suggest that the evolutionary dynamics of RRV do not preclude the success of vaccination in controlling EPA.

METHODS

Isolation and nucleotide sequencing of novel RRV genomes. Complete RRV genomes were sequenced from viruses recovered from mosquitoes (T48), wallabies (8961W, 9057W), birds (2975B, 2982B, 3078B) and a human EPA patient (QML1). RNA was extracted from RRV in the supernatant of infected cultures of Vero cells with
QIAamp Viral RNA minicolumns (Qiagen), according to the manufacturer’s instructions. The RNA was reverse-transcribed with SuperScript III reverse transcriptase (Invitrogen) and random hexanucleotide primers (Boehringer Mannheim) or with primers listed in Supplementary Table S2 (available in JGV Online). Seven overlapping fragments (nt 1–1562, 1241–3441, 2944–4809, 4581–6406, 6216–9045, 7939–9537, 9517–11657) of the resultant cDNA were amplified by using a mixture of Taq and Pwo polymerases (Expand Long Template DNA Polymerase; Roche) and virus-specific primers (Supplementary Table S2). The PCR product was analysed in 1.5 % (w/v) agarose–TAE gel (TAE gels) and bands of cDNA of interest were recovered and purified with QIAquick Gel Extraction kits (Qiagen) according to the manufacturer’s instructions. The cDNA was sequenced at the Australian Genome Research Facility (AGRF, Brisbane, Australia) using dyeideo dye chain-termination technology (Applied Biosystems).

Determination of the nucleotide sequences of the 5’ ends of the genome was performed by using a strategy for the rapid amplification of cDNA ends (RACE) described previously (Tillett et al., 2000). Briefly, cDNA from the RRV isolates was prepared from RNA by using 30 pmol primer cP370 and SuperScript III reverse transcriptase as described above. The cDNA was treated with 1 U RNase H (Roche) for 20 min at 37 °C prior to purification using a High Pure column (Roche). cDNA was ligated to an oligonucleotide adaptor DT88 (5’-GAAGAGAGTTGGAAATGGCGTTTGG-3’) and bands of cDNA were recovered and purified with QIAquick Gel Extraction kits (Qiagen) according to the manufacturer’s instructions. The cDNA was sequenced at the Australian Genome Research Facility (AGRF, Brisbane, Australia) using dyeideo dye chain-termination technology (Applied Biosystems).

Phylogenetic analysis of RRV geographical structure. The posterior set of trees was used to estimate the overall MCC phylogeny for the E2 sequence data. To determine the extent of geographical structure in RRV populations, we estimated the strength of association between phylogenetic relationships and sampling locations. The degree of association was estimated by using the PS (Slatkin & Maddison, 1989) and AI (Wang et al., 2001) statistics to determine the association with sampling locations across the entire tree, and the maximum MC (Parker et al., 2008) statistic to assess the association with particular sampling locations. Each E2 sequence was coded as coming from one of five geographical regions: north-east Australia (Queensland), south-east Australia (New South Wales, Tasmania or Victoria), Western Australia, north-central Australia (Northern Territory) or Pacific Islands (Cook Islands, Fiji or Samoa) (see Supplementary Table S4). Using the program BaTS v0.90 beta (Parker et al., 2008), distributions of the three statistics (PS, AI and MC) were calculated from the posterior samples of trees and compared with null distributions generated by randomizing the RRV geographical origins and recalculating across the tree sample to determine the significance of the empirical distributions (Parker et al., 2008). The first 10 000 sampled trees (i.e. 10 %) were discarded as burn-in and 1000 randomizations were performed to estimate null distributions for the statistics of interest.

Analysis of selection pressures. An FEL model (Kosakovsky Pond & Frost, 2005c) was used to determine the strength of selection pressures on the dataset of dated E2 sequences, manifest as the ratio of non-synonymous (ds) to synonymous (ds) substitutions per site. The analysis was performed first on all branches of the tree (i.e. FEL) and subsequently on only internal branches (i.e. IFEL; Kosakovsky Pond et al., 2006). An additional analysis of selective pressures acting on all genes individually was performed on the coding genome data by using the SLAC model (Kosakovsky Pond & Frost, 2005c). All analyses were performed in HyPhy (Kosakovsky Pond & Frost, 2005a) on the web server Datamonkey (Kosakovsky Pond & Frost, 2005b), with all input branch lengths and tree topologies estimated by using a
neighbour-joining algorithm and HKY85-based codon-substitution model.

ACKNOWLEDGEMENTS

This study was supported by grants from the National Health and Medical Research Council of Australia and from the Cook Estate.

REFERENCES

