Role of anti-lipopolysaccharide factor from the black tiger shrimp, Penaeus monodon, in protection from white spot syndrome virus infection

Sirinit Tharntada,1,2 Sirikwan Ponprateep,1 Kunlaya Somboonwiwat,1 Haipeng Liu,2 Irene Söderhäll,2 Kenneth Söderhäll2 and Anchalee Tassanakajon1

1Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
2Department of Comparative Physiology, Uppsala University, 75236 Uppsala, Sweden

The anti-lipopolysaccharide factor (ALF) from the black tiger shrimp, Penaeus monodon, has been shown previously to exhibit a broad spectrum of activity against various strains of bacteria and fungi. Herein, the recombinant ALF3 (rALF3) protein was examined for its role in the defence against white spot syndrome virus (WSSV) infection in haematopoietic (Hpt) cell cultures of the freshwater crayfish, Pacifastacus leniusculus, as well as in live P. monodon shrimps. Incubation of Hpt cell cultures with a mixture of WSSV and rALF3 resulted in a dose-dependent decrease in VP28 gene expression levels, compared with those incubated with WSSV alone, with an rALF3 IC50 value lower than 2.5 μM. However, pre-treatment of Hpt cells with 5 μM rALF3 showed no induced protection against subsequent WSSV infection, whereas the synthetic crayfish ALF peptide could protect cells at a higher concentration (10 μM). The in vivo role of ALF3 was examined by injection of P. monodon with WSSV pre-treated with rALF3 protein. The results clearly showed that rALF3 was able to reduce WSSV propagation and prolong the survival of shrimps.

Moreover, haemocyanin from P. monodon was observed to have non-specific antiviral properties in fish cell cultures in the absence of detected cytotoxicity against the host cells (Zhang et al., 2004). More recently, the newly discovered c-type lectin from Litopenaeus vannamei was shown to exhibit antiviral activity against WSSV (Zhao et al., 2009). In molluscs, synthetic mytilin, an antibacterial peptide from Mytilus galloprovincialis, possesses in vitro anti-WSSV activity and reduces the mortality of WSSV-infected palaemonid shrimps (Dupuy et al., 2004; Roch et al., 2008).

Anti-lipopolysaccharide factor (ALF), an antimicrobial protein, was first discovered in the horseshoe crabs, Tachypleus tridentatus (TALF) and Limulus polyphemus (LALF) (Aketagawa et al., 1986; Morita et al., 1985; Tanaka et al., 1982), and ALF cDNAs have subsequently been identified from various shrimps, crabs, lobsters and crayfish (Beale et al., 2008; Imjongjirak et al., 2007; Liu et al., 2006; Nagoshi et al., 2006; Supungul et al., 2004). In P. monodon, several isoforms of ALF have been identified from the expressed sequence tag (EST) database (http://pmonodon.biotec.or.th) (Tassanakajon et al., 2006). The two groups of P. monodon ALF isoforms are encoded by two separate genomic loci (Tharntada et al., 2008). ALF3, the predominant isoform, has been expressed...
in the yeast (Pichia pastoris) expression system and the recombinant ALFPm3 (rALFPm3) protein exhibits antimicrobial activity against both Gram-negative and Gram-positive bacteria as well as fungi (Somboonwiwat et al., 2005). In the freshwater crayfish, Pacifastacus leniusculus, ALF has been shown to interfere with WSSV replication in both in vitro cell cultures and in vivo in animals (Liu et al., 2006). In this study, we investigated the possible role of ALFPm3 in antiviral infections. The ability of the rALFPm3 protein to protect against WSSV infection was examined in crayfish haematopoietic (Hpt) cell cultures (in vitro) and in P. monodon shrimps (in vivo). The results revealed that ALFPm3 protein is potentially implicated in the defence mechanism against WSSV infection in shrimps.

METHODS

Animals. Freshwater crayfish, P. leniusculus, were purchased from Lake Vättern, Sweden, and were subsequently maintained in tanks with aerated running water at 10 °C. Only intermoult healthy crayfish were chosen for the experiments.

Black tiger shrimp (P. monodon) juveniles (3–5 g and 16–20 g body weight) were purchased from a local market and checked for the absence of WSSV by RT-PCR as described by Jiravanichpaisal et al. (2006). Only healthy shrimps were used for experiments. They were acclimatized in aquarium at ambient temperature (28 ± 4 °C) and maintained in aerated water with a salinity of 15 ppt for at least 1 day before use.

Preparation of crayfish Hpt cell culture. The Hpt tissues were obtained from P. leniusculus in order to culture the cells (Söderhäll et al., 2005). Briefly, the Hpt tissues were dissected from the dorsal side of the cardiac stomach (Chaga et al., 1995). The tissues were then washed in a crayfish phosphate buffer saline (CPBS; 10 mM Na2HPO4, 10 mM KH2PO4, 150 mM NaCl, 10 mM CaCl2, 10 mM MnCl2, pH 6.8), and then gently shaken in 0.1% (w/v) collagenase (type I and IV) in CPBS at room temperature to separate the Hpt cells. After 40 min incubation, the Hpt cells were separated by gentle aspiration of the cell suspension ten times, harvested by pelleting by centrifugation at 2500 × g for 5 min at room temperature, and washed twice by resuspension in CPBS buffer and pelleting as above. The washed Hpt cell pellet was then resuspended in a modified L15 buffer (20 mM Tris/HCl, 400 mM NaCl, 10 mM CaCl2, 10 mM MgCl2, pH 7.4) and pelleted as above. The required (see below) in TN buffer. A 200 μl aliquot of the diluted WSSV was injected intramuscularly into a healthy crayfish (P. leniusculus) or shrimp (P. monodon) in the lateral area of the fourth abdominal segment. The dosage used here, in terms of dilution level of the stock WSSV, was experimentally confirmed to be the amount that, when injected into the crayfish or shrimps, would let them survive for 8–10 days after the injection. Haemolymph from the moribund crayfish or gills from shrimp was collected. Haemolymph was purged of cells (haemocytes) by centrifugation at 2500 g for 10 min at 4 °C, filtered through a 0.45 μm filter and then stored at −80 °C until required. Gills were subjected to viral purification as detailed below.

The intact WSSV viral particles were purified from crayfish haemolymph or shrimp gills by a slight modification to the method described by Xie et al. (2005). The haemolymph was mixed with an equal volume of TNE buffer (50 mM Tris/HCl, 400 mM NaCl, 5 mM EDTA, pH 8.5) containing a combination of protease inhibitors (1 mM PMSF, 1 mM benzamidine and 1 mM Na3VO4), and then centrifuged at 3500 g for 5 min at 4 °C. In the case of gills, these were first homogenized in TNE buffer containing 1 mM PMSF (Xie et al., 2005). The supernatant from both haemolymph and gill extracts were collected and further centrifuged at 30 000 g for 30 min at 4 °C to pellet virions. The pellet was rinsed with TM buffer (50 mM Tris/HCl, 10 mM MgCl2, pH 7.5) and centrifuged at 3500 g for 5 min. Subsequently, the pellet was suspended in TM buffer and then supernatant was subjected to centrifugation at 30 000 g for 30 min at 4 °C. The pellet was then suspended in TM buffer and divided into aliquots and stored at −80 °C until use.

Inhibitory effect of rALFPm3 on WSSV infection of Hpt cell cultures. The effect of rALFPm3 on WSSV infection was investigated by determining the extent of viral propagation in Hpt cell cultures. The gene encoding the viral envelope protein, VP28, is one of the late genes and is expressed after replication of the viral genome (Marks et al., 2003, 2005). Therefore, the expression of VP28 likely represents a successful WSSV replication and potential propagation in Hpt cells or in animals. The crayfish housekeeping gene, 40S rRNA, was used as an internal control. Prior to performing the experiment, a sufficient amount of stock WSSV virions for effective infections was tested for viral activity. WSSV stock solution in plasma or in TN buffer was added at a final dilution of 1:104 Hpt cells already attached to the 96-well culture plate. After incubation at 20 °C for 2 h, the infection medium was replaced with new culture medium and the cells were incubated for another 36 h. Total RNA was then extracted using a GenElute Mammalian Total RNA Miniprep kit (Sigma-Aldrich). The DNA was removed by digesting with DNase I (Ambion), and cDNA was synthesized from the remaining mRNA using 50 μM Oligo(dT)20 primer and ThermoScript reverse transcriptase (Invitrogen), as per the manufacturers’ guidelines.

To determine the WSSV propagation levels, the WSSV VP28 and 40S rRNA gene transcripts were amplified as described previously by Jiravanichpaisal et al. (2006). Each cDNA preparation of 1 μl (prepared from 0.5 μg of total RNA) was used for PCR amplification in a 50 μl reaction volume containing 0.25 U Paq5000 DNA Polymerase (Stratagene), 1 × reaction buffer, 200 μM dNTP mix, and 0.6 μM each of the appropriate forward and reverse primers for amplification of the WSSV VP28 or 40S rRNA genes (Supplementary Table S1, available in JGV Online). An initial denaturation at 94 °C for 3 min was followed by 28 cycles of 94 °C for 30 s, 60 °C for 3 s, and 72 °C for 40 s, with a final 72 °C for 10 min. The PCR products were analysed by electrophoresis using TBE-1.5% agarose gels and UV-transillumination. The expected amplicon size of VP28 and 40S rRNA fragments, at 506 and 359 bp, respectively, were obtained in all experiments. In all RT-PCRs a control with no reverse transcriptase was also performed to ensure that residual DNA was not present in the RNA samples. The lowest amount of diluted WSSV which could successfully infect Hpt cells, defined here as the ‘infection dose’, was used for all Hpt cell cultures experiments. To test the inhibitory effect of rALFPm3 on WSSV infection, the purified rALFPm3 protein at a final concentration of 20 μM was mixed with diluted WSSV at the infection dose and immediately added to the Hpt cell cultures. The medium was replaced after 2 hours to remove
unbound virions and rALFPm3 protein, as appropriate, and the Hpt
cells were then cultivated at 20 °C for 36 h prior to total RNA
extraction and amplification of the VP28 and 40S rRNA genes, as
described above.

The detection and comparative quantification of VP28 expression
in primary crayfish Hpt cell cultures was performed by quantitative RT-
PCR (qRT-PCR) using the QuantiTect SYBR green PCR kit (Qiagen)
(Liu et al., 2006). The primers used for qRT-PCR are shown in
Supplementary Table S1. The SYBR green quantitative RT-PCR
amplification was performed by a Rotor-Gene 3000 (Corbett
Robotics). The RNA extraction and cDNA synthesis were as described
above. The cDNA samples were diluted 1:10 with nuclease-free water
and the amplification was done in a 25 μl reaction volume containing
1 × QuantiTect SYBR green PCR master mix, 0.4 μM each forward
and reverse primers, and 5 μl of diluted cDNA template. All runs
employed a negative control without target DNA. The RT-PCR
profile was as follows: 95 °C for 15 min, followed by 45 cycles of
94 °C for 15 s, 60 °C for 20 s and 72 °C for 20 s. Each sample was
assayed in triplicate. The expression level of WSSV VP28 gene
transcripts (cDNA) was normalized against the expression level of the
40S ribosomal gene cDNA for each sample. The threshold cycle (Ct)
of each sample was analysed by the 2-ΔΔCt method (Livak &
Schmittgen, 2001). Statistical analysis of the qRT-PCR results was
interpreted using the independent samples t-test, and means were
considered significantly different at P<0.05.

Investigation of the mechanism of ALFPm3-mediated inhibition
of WSSV infection. The experiment was carried out to investigate whether rALFPm3 could inhibit attachment of the WSSV
virus to the Hpt cells under conditions of either low (11 °C) or high
(20 °C) binding/attachment of the virus to the cells. Subsequently, the
virus was allowed to replicate at the appropriate temperature (20 °C)
(Jiravanichpaisal et al., 2004, 2006). A mixture of the infection dose of
WSSV with or without 5 μM rALFPm3 was incubated with 104
adhered Hpt cells at 11 or 20 °C. After 2 h incubation, the medium
was removed completely and the cells were washed twice with CPBS
and finally fresh medium was added. The incubation was continued at
20 °C for 36 h. WSSV infection was then determined by RT-PCR as
described above.

Protective effect of ALF upon WSSV infection in Hpt cell
cultures. To determine the protective effect of rALFPm3 on WSSV
infection in primary Hpt cell cultures, rALFPm3 was pre-incubated
with Hpt cell cultures at 20 °C for 30 min. The cultures were washed
with CPBS buffer and WSSV, diluted in fresh medium to the infection
dose, was added. After incubation at 20 °C for 2 h, the medium
was removed and replaced with fresh culture medium. The cultures
were then incubated at 20 °C for 36 h, and subsequently the degree of
infection by WSSV was determined by RT-PCR as described above.
Hpt cells pre-incubated with water were used as a control treatment.
The potential effect of the crayfish ALF on WSSV infection was also
tested in Hpt cell cultures using a synthetic peptide (49-
GHTCNYSYSPITISKFQLPKYKGMWC-GP-75) with N-terminal acety-
lation and C-terminal amide (EZBiolab). To determine whether the
synthetic crayfish ALF could inhibit viral replication in Hpt cell
cultures, the peptide was incubated with Hpt cells at a final
concentration of 1 and 10 μM. Hpt cells were also incubated with the
same amount of DMSO, the solvent used to dissolve the peptide,
as control treatment. The WSSV infection level was then evaluated by
RT-PCR as described above.

Trypan blue exclusion test of cell viability. Trypan blue dye
exclusion was used to determine the number of viable cells in
rALFPm3-treated Hpt cultures. Hpt cells (105) in 150 μl culture
medium per well of a 96-well plate were incubated with 5, 10 or
20 μM purified rALFPm3 at 20 °C for 30 min. One hundred
microlitres of culture medium were then removed and 8 μl trypan
blue solution [0.4 % (w/v) trypan blue in 0.81 % (w/v) sodium
chloride and 0.06 % (w/v) dipotassium monohydrogen ortho-
phosphate] was added. Viable cells had clear cytoplasm whereas nonviable
cells had blue cytoplasm. For each experiment, the number of viable
cells was counted in three areas of one well.

Neutralization effect of ALF on WSSV infection in P. monodon
shrimps. P. monodon juveniles were divided into two groups of four to
five shrimps each (16–20 g body weight). Both groups were injected
intramuscularly at the third abdominal segment with 100 μl of a 10−7
dilution of the purified WSSV stock, a level which caused 100 % shrimp
mortality within 3 days (data not shown). However, for the second
group of shrimps the WSSV stock was pre-incubated with one of
various concentrations of the purified rALFPm3 for 30 min. At 24 h
post injection, shrimp gills were collected and total RNA was extracted.
The level of WSSV VP28 transcripts was determined by qRT-PCR with
the transcript levels of the β-actin gene in the same RNA extractions
used as the internal control. The primers used for qRT-PCR are shown
in Supplementary Table S1 (available in JGV Online). The PCR profile
of VP28 gene was performed as described above, whilst that for the
β-actin gene was as follows: 94 °C for 3 min, followed by 25 cycles of
94 °C for 30 s, 60 °C for 30 s and 72 °C for 40 s. The expected size of
the β-actin amplicon was 337 bp. The detection and comparative
quantification of WSSV propagation in shrimps was performed by
qRT-PCR as described above. Statistical analysis of the qRT-PCR
results was interpreted using the independent samples t-test, with
differences being considered significant at the P<0.05 level.

To further examine the neutralizing effect of rALFPm3 on WSSV-
injected P. monodon shrimps, the cumulative mortality of P. monodon
shrimps injected with WSSV pre-treated with rALFPm3 was
compared with that of those injected with untreated WSSV. Three
groups of ten shrimps each (3–5 g body weight) were used in this
experiment. The first group was the control, where shrimps were
injected with 30 μl TN buffer. The second group was shrimps injected
with 30 μl purified WSSV diluted in TN buffer at a 5 × 10−7 dilution.
Shrimps in the last group were injected with 30 μl of the same
amount of WSSV as in the second group, but which had been pre-
incubated with 100 μM purified rALFPm3 for 30 min at room
temperature. The shrimp mortality was observed daily for 8 days. The
experiment was performed in triplicate.

RESULTS

Inhibitory effect of ALFPm3 on WSSV infection in crayfish Hpt cell cultures

An Hpt cell culture from the signal crayfish, P. leniusculus,
which is susceptible to WSSV (Jiravanichpaisal et al., 2006),
was used in this study. Hpt cell cultures were incubated at
20 °C with WSSV alone or with WSSV plus the
recombinant protein of ALFPm3 (rALFPm3) and after
36 h cultivation the VP28 transcript expression levels in the
Hpt cell cultures were detected by RT-PCR using specific
primers. The expected size amplicon for VP28 was seen
in Supplementary Table S1 (available in JGV Online). The PCR profile
used as the internal control. The primers used for qRT-PCR are shown
in Supplementary Table S1 (available in JGV Online). The PCR profile
of VP28 gene was performed as described above, whilst that for the
β-actin gene was as follows: 94 °C for 3 min, followed by 25 cycles of
94 °C for 30 s, 60 °C for 30 s and 72 °C for 40 s. The expected size of
the β-actin amplicon was 337 bp. The detection and comparative
quantification of WSSV propagation in shrimps was performed by
qRT-PCR as described above. Statistical analysis of the qRT-PCR
results was interpreted using the independent samples t-test, with
differences being considered significant at the P<0.05 level.

To further examine the neutralizing effect of rALFPm3 on WSSV-
injected P. monodon shrimps, the cumulative mortality of P. monodon
shrimps injected with WSSV pre-treated with rALFPm3 was
compared with that of those injected with untreated WSSV. Three
groups of ten shrimps each (3–5 g body weight) were used in this
experiment. The first group was the control, where shrimps were
injected with 30 μl TN buffer. The second group was shrimps injected
with 30 μl purified WSSV diluted in TN buffer at a 5 × 10−7 dilution.
Shrimps in the last group were injected with 30 μl of the same
amount of WSSV as in the second group, but which had been pre-
incubated with 100 μM purified rALFPm3 for 30 min at room
temperature. The shrimp mortality was observed daily for 8 days. The
experiment was performed in triplicate.

http://vir.sgmjournals.org
and increasing amounts of rALFpm3 (0, 2.5, 5, 10 and 20 μM). Changes in VP28 transcript level were quantitatively determined by real-time RT-PCR (qRT-PCR), using the 40S ribosomal gene, a crayfish housekeeping gene, as the internal control. At all tested concentrations, rALFpm3 was found to significantly reduce the VP28 transcript levels with an estimated IC50 for the inhibition of VP28 gene expression lower than 2.5 μM (Fig. 2).

Investigation of the mechanism of ALFpm3-mediated inhibition of WSSV infection

To further investigate the mechanism of rALFpm3 on WSSV infection inhibition, the effect of rALFpm3 on prevention of WSSV attachment to the cells was studied. By incubating the Hpt cells with WSSV and 5 μM purified rALFpm3 at either low (11 °C) or high (20 °C) viral-binding temperature, it was found that the viral propagation was completely inhibited in both conditions tested (Fig. 3), which suggested that rALFpm3 in some way efficiently prevented WSSV from binding and/or entering into the Hpt cells.

Protective effect of ALF on WSSV infection in Hpt cell cultures

To test whether rALFpm3 has a protective (prophylactic) effect on Hpt cell cultures against viral infection, the cells were first treated with rALFpm3 (5 μM) followed by WSSV infection. Pretreatment of Hpt cells with rALFpm3 did not reduce the VP28 expression levels following subsequent WSSV challenge (Fig. 4a), suggesting that under these conditions rALFpm3 probably could not protect the cells from WSSV infection. Whether such a prophylactic activity would be detected with a much higher concentration of rALFpm3 cannot be ruled out and awaits further investigation.

In contrast, the synthetic crayfish ALF peptide at 10 μM could protect cells from WSSV infection, as shown by the strong reduction in the VP28 transcript expression levels, whereas no reduction was observed at 1 μM (Fig. 4b). Thus, the synthetic crayfish ALF peptide, whose sequence corresponds to the putative lipopolysaccharide-binding site, could protect Hpt cell cultures against WSSV infection when crayfish ALF was present at a relatively high
concentration. We also tried to co-incubate the synthetic ALF peptide with WSSV to test whether the ALF peptide could directly neutralize the virus. Unfortunately, the incubation of DMSO (control) with WSSV showed considerable inactivation of the virus (data not shown), and it is difficult to dissolve the ALF peptide completely in water or other crayfish saline buffers which made these experiments difficult to perform.

Cytotoxicity of rALF_{Pm}3 on Hpt cell cultures

To examine the cytotoxicity of rALF_{Pm}3 on Hpt cell cultures, the trypan blue exclusion test was performed on Hpt cell cultures that were incubated with increasing concentrations of rALF_{Pm}3. Incubation of Hpt cultures with 5, 10 and 20 μM rALF_{Pm}3 for 30 min at 20 °C showed a slight (~5%) decrease in viable cell numbers at the highest concentration of rALF_{Pm}3 tested (Fig. 5).

In vivo neutralization of rALF_{Pm}3 on WSSV-infected P. monodon

The *in vivo* neutralization effect of rALF_{Pm}3 on WSSV propagation was further examined in *P. monodon* shrimps. Whilst the injection of shrimps with WSSV only resulted in high expression of VP28, confirming the viability of the virions and the competence/susceptibility of the shrimps to WSSV infection, when injected with WSSV mixed with 50 μM rALF_{Pm}3 essentially no VP28 transcripts were detected (Fig. 6). These results suggest that rALF_{Pm}3 is able to inhibit WSSV infection and/or subsequent replication in shrimps (Fig. 6). By injecting WSSV that had been pre-incubated with purified rALF_{Pm}3 at 0 (control), 12.5, 25, 50 or 100 μM, and determining the expression level of VP28 transcripts by qRT-PCR, it was found that only at the higher doses of 50 or 100 μM rALF_{Pm}3 was a significant reduction in VP28 expression levels, and thus replication in shrimps, observed (Fig. 7a). In addition, *P. monodon* injected with WSSV pre-treated with rALF_{Pm}3 had a higher survival rate than those injected with untreated WSSV. For example, the cumulative mortality of shrimps injected with WSSV pretreated with rALF_{Pm}3 reached 100% at day 8, compared with day 4 in the WSSV-infected group (Fig. 7b), clearly suggesting a significant degree of neutralization of WSSV with rALF_{Pm}3 that could prolong the survival of shrimps.

DISCUSSION

Proteins possessing antiviral activity have been reported in several marine species, including tachyplesin, polyphemusin, PmA_V, L_vCTLI, haemocyanin and mytilin (Liu *et al.*, 2009; Luo *et al.*, 2003; Masuda *et al.*, 1992; Morimoto *et al.*, 1991; Murakami *et al.*, 1991; Nakashima *et al.*, 1992; Roch *et al.*, 2008; Tamamura *et al.*, 1993, 1996; Tonganunt *et al.*, 2008; Yasin *et al.*, 2000; Zhang *et al.*, 2004; Zhao *et al.*, 2009). Both tachyplesin and polyphemusin from the horseshoe crab exhibit antiviral activity against human immunodeficiency virus (HIV) (Masuda *et al.*, 1992; Morimoto *et al.*, 1991; Nakashima *et al.*, 1992; Tamamura *et al.*, 1993, 1996). Moreover, tachyplesin displays antiviral properties against other viruses including herpes simplex virus (HSV), vesicular stomatitis virus (VSV) and influenza A virus (IAV) (Murakami *et al.*, 1991; Yasin *et al.*, 2000). Both PmA_V and haemocyanin from shrimps have antiviral activities against fish viruses in fish cell cultures. L_vCTLI, a newly reported c-type lectin from *L. vannamei*, exhibits antiviral activity against WSSV by binding with envelope proteins of the virus (Zhao *et al.*, 2009). Mytilin, an antibacterial peptide in *M. galloprovincialis*, at least as a synthetic peptide, shows antiviral properties against WSSV in shrimps where it reduces shrimp mortality following WSSV infection (Dupuy *et al.*, 2004; Roch *et al.*, 2008).
Incubation of Hpt cell cultures with WSSV alone resulted in propagation of the virus, as observed by the increased presence of VP28 transcripts. When the cells were incubated with WSSV and high concentration of rALFPm3 protein (20 μM), a complete reduction in the level of VP28 transcripts was found in a concentration-dependent manner, and less than 2.5 μM of rALFPm3 was found to be able to inhibit the average VP28 gene transcript expression level by 50%, as shown by qRT-PCR. No protective (prophylactic) effect of rALFPm3 on WSSV propagation was observed if Hpt cultured cells were preincubated with 5 μM of rALFPm3, as WSSV replicated normally in the cell cultures after rALFPm3 was removed. In contrast, preincubation of these cells with 10 μM of the synthetic crayfish ALF peptide significantly affected WSSV propagation in a clear and dose-dependent manner.

Previously, the antiviral activity of crustacean tissues was compared at 4 and 37 °C for determining their mode of action (Pan et al., 2000). Propagation of the virus does not proceed at 4 °C, probably because the cells are more stable (Singh et al., 1995). Similarly, it has been shown that temperature affects the infectivity of WSSV to crayfish Hpt cell cultures (Jiravanichpaisal et al., 2006). A high temperature is required for viral replication. However, here Hpt cells incubated with WSSV and rALFPm3 at 11 and 20 °C showed no difference in the degree of protection afforded by rALFPm3 against WSSV infection, as determined by transcript levels of the late gene VP28. Hence, WSSV replication was completely inhibited at both temperatures. One implication of this is that, in the presence of rALFPm3, WSSV is unable to attach to Hpt cells and is subsequently removed during washing, along with the rALFPm3 protein. Certainly, antiviral substances can protect cells against virus infection through different mechanisms, e.g. by directly inactivating the virus or by interfering with the virus replication cycle. Some antimicrobial peptides have a direct effect on the viral envelope proteins, whereas others appear to inhibit the viral adsorption and entry process (Jensen et al., 2006). From this study, it is plausible that rALFPm3 can interfere with WSSV propagation by preventing binding or entry of WSSV into Hpt cells.

The crayfish ALF has been shown previously to interfere with WSSV replication by RNA interference (RNAi) both in cell cultures and in animals (Liu et al., 2006). Here, we showed that the synthetic crayfish ALF peptide could inhibit WSSV replication in Hpt cell cultures when the cells were pretreated with a relatively high concentration of the peptide (10 μM), whilst no inhibition was observed at a low concentration (1 μM).

The in vivo neutralization effect of ALFPm3 on WSSV infection demonstrates that rALFPm3 could efficiently protect P. monodon from WSSV infection. From these experiments, it seems likely that rALFPm3 is a highly potent immune molecule in the defence against WSSV infection, and suggests its potential application for disease control in aquaculture.

In P. monodon, ALFPm3 is an antimicrobial peptide which exhibits a broad spectrum of activity against several strains of bacteria and fungi (Somboonwiwat et al., 2005). Here, the effects of ALFPm3 on WSSV infection were investigated in Hpt cell cultures as well as in shrimps. Hpt cell cultures from crayfish, P. leniusculus, previously shown to be susceptible to WSSV (Jiravanichpaisal et al., 2006), were used for the study. Shrimp primary cell cultures have been established by several research groups and some of them have been shown to be susceptible to shrimp viruses including WSSV and yellow-head virus (YHV) (Itami et al., 1999; Kasornchandra et al., 1999; Maeda et al., 2003, 2004; Tapay et al., 1995; Wang et al., 2000). However, the crayfish Hpt cell culture has the advantage that it is a proliferating cell culture that can survive a few weeks at 25 °C and longer than several months at 16 °C, and in which WSSV can replicate (Jiravanichpaisal et al., 2006; Söderhäll et al., 2005).
ACKNOWLEDGEMENTS

This work has been financed by the Swedish Research Council Formas and VR/SIDA to K.S. and by the Thai Commission on Higher Education and BIOTEC to A.T. A student fellowship granted to S.T. by the Royal Golden Jubilee PhD Program, Thailand Research Fund, is acknowledged.

REFERENCES

