Deletion of a *Helicoverpa armigera* nucleopolyhedrovirus gene encoding a virion structural protein (ORF107) increases the budded virion titre and reduces *in vivo* infectivity

Xiaoyu Pan,1,2 Gang Long,1,3 RanRan Wang,1,2 Songwang Hou,1† Huiyuan Wang,1,2 Yueting Zheng,1 Xiulian Sun,1 Marcel Westenberg,3 Fei Deng,1 Hualin Wang,1 Just M. Vlak3 and Zhihong Hu1

1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
2Graduate School of the Chinese Academy of Sciences, Beijing 100039, PR China
3Laboratory of Virology, Wageningen University, 6709 PD Wageningen, The Netherlands

The open reading frame *Ha107* of *Helicoverpa armigera* single nucleocapsid nucleopolyhedrovirus (HearNPV) encodes a putative protein of 51 kDa with homologues in a few group II NPVs and a granulovirus. *Ha107* was transcribed as polyadenylated transcripts in infected HzAM1 insect cells. The transcripts were initiated at two distinct locations, one upstream of *Ha106* (superoxide dismutase gene, sod) and the second upstream of *Ha107*. By Western blot analysis, two forms of the *Ha107* protein were detected in infected cells, a major polypeptide of 48 kDa and a minor one of 51 kDa. Western blot and immunoelectron microscopy analyses further showed that the *Ha107* protein was associated with the nucleocapsids of both budded virions (BVs) and occlusion-derived virions. A *Ha107* knockout virus expressing enhanced green fluorescent protein and polyhedrin was constructed using bacmid technology. A one-step virus growth curve indicated that the BV titre of the knockout virus was significantly higher than that of the parental virus and a *Ha107* repair virus. Bioassays indicated that the knockout virus was able to infect third-instar *H. armigera* larvae; however, its median lethal dose (LD50) was significantly higher than those of the parental virus and *Ha107* repair virus. These data indicate that *Ha107* encodes a non-essential structural protein of HearNPV virions and that deletion of this gene increases the BV titre and LD50 of the occluded virus.

INTRODUCTION

The family *Baculoviridae* is a group of occluded, rod-shaped viruses, with circular, supercoiled, double-stranded DNA genomes of a size ranging from 80 to 230 kbp. This family of insect viruses has been divided taxonomically into two genera: *Nucleopolyhedrovirus* (NPV), members of which have multiple virions present within large polyhedron-shaped occlusion bodies, and *Granulovirus* (GV), members of which have a single enveloped nucleocapsid embedded in a granule occlusion body (Theilmann et al., 2004). Phylogenetic studies have indicated that NPVs can be subdivided into two groups, I and II (Bulach et al., 1999; Herniou et al., 2003; Zanotto et al., 1993). During the infection cycle of lepidopteran baculoviruses, two distinct viral phenotypes are produced, the occlusion-derived virus (ODV) and budded virus (BV) (Volkman & Summers, 1977). ODVs are encapsulated in polyhedra that dissolve in the alkaline environment of the midgut, release the virions and initiate infection in midgut columnar epithelial cells. The ODV is associated with the spread of the virus from insect to insect, whereas BVs are not occluded and are adapted to disseminate infection from cell to cell and are responsible for the systemic infection in larvae and in cell cultures. Although ODVs and BVs differ in the composition of their envelopes, the nucleocapsids of the two viral phenotypes are similar in structure and function (Funk et al., 1997). The functions of many of the structural virion proteins, however, are unknown.

Helicoverpa armigera single nucleocapsid NPV (HearNPV, also called HaSNPV) is a highly infectious pathogen of the cotton bollworm *H. armigera* and related heliothines (Sun et al., 1998). The virus was isolated from diseased *H. armigera* larvae in the Hubei province of China in 1975
HearNPV has been adapted for production as a biological pesticide and has been applied to control insect pests in China and other countries on cotton and vegetables. The genome sequence of the HearNPV G4 strain has been determined in its entirety (Chen et al., 2001). Computer-assisted analysis has revealed 135 putative open reading frames (ORFs) among which 100 ORFs have homologues in the Autographa californica multicapsid NPV (AcMNPV), 15 have homologues in other baculoviruses and the remaining 20 ORFs are so far unique to HearNPV and its genotypic variant Helicoverpa zeae SNPV (HzSNPV) (Chen et al., 2002).

Ha107 is one of the 15 ORFs with homologues in other baculoviruses and is currently uncharacterized. The Ha107 gene has been predicted to encode a protein of about 51 kDa. A homologue of this ORF is present in the HearNPV CI strain (Zhang et al., 1999) and in HzSNPV (Chen et al., 2002). Moreover, homologues of Ha107 are also found in a limited number of baculovirus species, such as Agrotis segetum multicapsid nucleopolyhedrovirus (AgseNPV; Jakubowska et al., 2006), Spodoptera exigua MNPV (SeMNPV; Ikkel et al., 1999), S. litura MNPV (SpltNPV; Pang et al., 2001) and A. segetum granulovirus (AgseGV; unpublished GenBank accession no. NC_000389), but not in group I NPVs.

In this study, the transcription characteristics of Ha107 and the expression and location of its encoded protein were investigated. The Ha107 protein appeared to be a nucleocapsid-associated protein of both BV and ODV. In addition, Ha107 was not essential for virus replication, but deletion of this gene appeared to increase the BV titre and the median lethal dose (LD50) of the recombinant virus.

METHODS

Cells, virus and insects. The HzAM1 cell line (McIntosh et al., 1999) was maintained in Grace’s medium with 10% fetal bovine serum. HearNPV strain G4 (Sun et al., 1998) was used for experiments and was propagated in HzAM1 cells. A culture of *H. armigera* insects was maintained according to Sun et al. (1998) for HearNPV occlusion body production and bioassays.

Total RNA isolation and 3’ and 5’ rapid amplification of cDNA ends (RACE) analysis. HzAM1 cells were infected with BVs of HearNPV at an m.o.i. of 0. Total RNA was isolated from infected and mock-infected cells at 0, 4, 8, 12, 24, 36, 48, 72 and 96 h post-infection (p.i.) by Trizol extraction (Invitrogen). RT-PCR was performed with 1 μg purified total RNA as template per time point. First-strand cDNA synthesis was performed using AMV reverse transcriptase (Promega) and an oligo(dt) anchor primer to the 3’ end of Ha107 (5’-GACCACCGGTATCGATGTCGACTTTTTTTTTTTTTTTTTTTT-3’). The cDNA mixtures were amplified using an anchor primer (5’-GACCACCGGTATCGATGTCGAC-3’) and Ha107-specific forward primer 1 (5’-GGTGGCCACTCGCCGACATAA-3’). The PCR products obtained from RNA at 48 h p.i. were cloned into the pGEM-T Easy vector (Promega) and sequenced to determine the 3’ end of the Ha107 transcripts. The 3’ RACE PCR of ORF106 of HearNPV (Ha106) was amplified with the oligo(dt) anchor primer and Ha106-specific forward primer 2 (5’-GGCGTGGATCCGGCATCACAC-3’).

Generation of polyclonal antibody against HA107. A truncated fragment of Ha107 (nt 101017–102391) (Chen et al., 2001) encoding the hydrophilic loops (aa 136–304) (Fig. 1) was PCR-amplified using two primers, ExF (5’-GGGGATCCGATCCGCATATTTCGTTAAAGATGTTAGTAC-3’) (BamHI site underlined) and ExR (5’-GGGAATTCAGCGAGTGGGGACAATTTATC-3’) (EcoRI site underlined). The purified PCR product was cloned into the pGEX-KG expression vector (Guan & Dixon, 1991), giving pGEX-EX107 and expressed as truncated HA107 protein fused to glutathione S-transferase (GST–EX107) in *E. coli* BL21 cells. The purified GST–EX107 proteins from gel slices were injected into a rabbit (300 μg per injection for initial as well as booster) to generate anti-HA107 antibodies.

Western blot analysis of HA107 expression. Monolayers of HzAM1 cells were mock- and HearNPV-infected at an m.o.i. of 5. Cells were harvested at 0, 8, 12, 24, 48, 72 and 96 h p.i. and subjected to SDS-PAGE and Western blot analysis according to the method of Long et al. (2003). Membranes were allowed to react with the anti-HA107 antiserum diluted 1:1500 and bands were detected after incubation with horseradish peroxidase-conjugated goat anti-rabbit immunoglobulin (Sigma) using a SuperSignal West Femto Maximum Sensitivity Substrate kit as described by the manufacturer (Pierce).

Purification of BV and ODV fractions and Western blot analysis. The envelope and nucleocapsid fractions of BV and ODV were separated after treatment with NP-40 as previously described (Long et al., 2003). Proteins of purified BVs and ODVs, as well as their nucleocapsid and envelope fractions, were separated by 12% SDS-PAGE and transferred onto Hybond-N membranes (Amersham). Anti-HA107 antiserum was used for Western blot analysis and polyclonal anti-VP39, anti-ODV-E18 and anti-HA1 antibodies were used as controls for nucleocapsid-, ODV envelope- and BV envelope-specific proteins, respectively.

Immunoelectron microscopy (IEM) analysis. The IEM protocol was according to Tasi et al. (2006). Suspensions of purified ODVs or their nucleocapsid fractions were diluted and adsorbed to Formvar-supported, carbon-coated nickel grids (250 mesh) for 30 min at 4°C. The grids were blocked in blocking buffer [4% BSA, 50 mM Tris/HC1 (pH 7.5), 200 mM NaCl] for 30 min at 37°C and then incubated with anti-HA107 antiserum or pre-immune serum (1:20 dilution) in incubation buffer [0.1% BSA, 50 mM Tris/HC1 (pH 7.5), 200 mM NaCl] for 2 h at 37°C. After incubation and several washes with incubation buffer, the grids were incubated with goat anti-rabbit secondary antibody conjugated with gold particles (1:20 dilution in incubation buffer, 12 nm diameter; Jackson ImmunoResearch) for 1 h at 37°C. The grids were then washed extensively with incubation buffer and negatively stained with 2% phosphotungstate. Specimens were examined with a transmission electron microscope (H-7000 FA; Hitachi).

Construction of Ha107 knockout HearNPV bacmid. The Ha107 knockout HearNPV bacmid was constructed by using a modified *α* phage Red recombination system (Datsenko & Wendell, 2000). Two
primers were designed to generate by PCR a linear fragment containing a chloramphenicol resistance gene (CmR) and with 43 bp flanking sequences targeting the Ha107 region on the HearNPV genome. The forward primer was 5'-TGTACGATGTG-TCATCGTAACGTTATTGGCGCTCGCGACAGTGGGCACCAA-ACCTGCCT-3' (nucleotides homologous to Ha107 are underlined). A stop codon (in bold) was introduced in the primer. The reverse primer was 5'-TAATTTGTACACTAAAGTTTGCATTAAAGCGCC-AGCAATTGGACCTGTGCGACGGTTACG-3' (nucleotides homologous to Ha107 are underlined). The 3' end of the primers anneal to the CmR gene of pBeloBac11 (Shizuya et al., 1992). After DpnI digestion, the linear PCR fragment was electrotransferred into competent DH10B cells carrying HearNPV bacmid HaBacHZ8 and the helper plasmid pKD46 (Hou et al., 2002). The resulting recombinant bacmid was designated HaBacDHa107.

The Ha107 truncation and CmR gene insertion in HaBacDHa107 was confirmed by EcoRI digestion and PCR analysis with two pairs of primers. The first pair was used to confirm insertion of the CmR gene cassette into the Ha107 locus of the HearNPV bacmid: one primer corresponded to sequences within the inserted CmR gene (CM: 5'-GTATGGCAATGAAAGACGGTGAG-3') and the other (EnF:}

Fig. 1. Comparison of HA107 homologues. (a) Comparison of the predicted amino acid sequences of the HA107, SplitNPV ORF105, AgseNPV ORF22, SeMNPV ORF22-23-24 and AgseGV ORF39 proteins. Alignment was performed using MEGALIGN software with CLUSTAL W and was edited using Gendoc software. (b) Predicted topology of HA107 homologues. Shaded boxes represent predicted transmembrane domains. The figure was drawn according to the TMHMM software-predicted result. The positions of the amino acid sequences are indicated.
5'-GGGATCCCTCTCTACGATGTGTTGAT-3', underlined nucleotides correspond to the virus genome nt 101017–101039) was from the HearNPV genome outside the sequence used for recombination. With this pair of primers, a PCR product of 530 bp should be amplified from HaBacAHa107 but not from the control bacmid HaBacH28. The second pair of primers (Exf and Exr) was within the Ha107 cassette and was used to confirm the absence of the Ha107 gene. These two primers should not produce a PCR product in HaBacAHa107 but should produce a 524 bp product in the parental HaBacH28. As the inserted CmR gene contained an extra EcoRI site, this enzyme was used to identify the bacmids. According to software-predicted results, a 5.99 kb EcoRI fragment from HaBacH28 should be replaced by two smaller EcoRI fragments of 2.91 and 2.92 kb, respectively, in HaBacΔ107.

Construction of knockout, repair and control HearNPV bacmids containing the polyhedrin and enhanced green fluorescence protein genes. To insert the polyhedrin gene (ph) and the enhanced green fluorescence protein gene (egfp) into HaBacAHa107 and HaBacH28, a donor plasmid, pFastBac-eGFP-PH, was constructed. The egfp ORF was amplified using primer pair GFP-F (5'-GAGCTCAGATGGTGACAGGCGAGA-3') and GFP-R (5'-GCCGCTAGCTTACTTGTCACGCTCGATTG-3') containing XhoI and NheI (underlined) sites, respectively, from the pEGFP-N1 vector (Invitrogen). The digested PCR product was cloned into the pFastBacDual vector (Invitrogen), giving pFastBac-eGFP. The HearNPV ph gene and its own promoter were PCR amplified with primers BacpolhF (5'-GGGATCCATCGTGAGGAGCGTAGTGCCA-3') and BacpolhR (5'-GGGATCCATGGCGAAGGGCGTTAAATAATGCCGAGC-3'), which contained EcoRV and EcoRI (underlined) sites, respectively. After sequence verification, the ph gene was inserted into BstI10111/EcoRI-restricted pFastBac-eGFP vector, resulting in pFastBac-eGFP-PH.

To generate a Ha107 repair HearNPV bacmid, a donor plasmid, pFastBac-eGFP-PH-Ha107, was constructed as follows. A 238 bp NotI–AfiI fragment containing the SV40 poly(A) tail addition signal was obtained from the vector pEGFP-N1. A 1.7 kb AflII–XhoI fragment containing the coding region of Ha107 and its proximal promoter region was amplified using forward primer 5'-GAC-CTTACGATGTTGACAGGCGAGA and reverse primer 5'-GACACCCATGGCGAAGGGCGTTAAATAATGCCGAGC-3', which contained EcoRV and EcoRI (underlined) sites, respectively. After sequence verification, the ph gene was inserted into NotI/AflII-digested vector pFastBac-eGFP-PH at the same time to give the donor plasmid pFastBac-eGFP-PH-Ha107.

Bacmid transpositions were performed according to the Bac-to-Bac manual (Invitrogen) to insert the donor sequences into the various bacmids. The resulting recombinant bacmids were named: HaBacH28-eGFP-PH (the control bacmid HaBacH28 containing ph and egfp), HaBacAHa107-eGFP-PH (Ha107 knockout bacmid containing ph and egfp) and HaBac-rHa107-eGFP-PH (Ha107-repaired bacmid containing ph and egfp) (see Fig. 4a). These recombinant bacmids were used to transfect HzAM1 cells to obtain the corresponding viruses.

One-step viral growth curves. To investigate the growth rate of virus constructs, HzAM1 cells were infected with HaBacH28-eGFP-PH, HaBacAHa107-eGFP-PH or HaBac-rHa107-eGFP-PH at an m.o.i. of 10 and BV titres were determined by end-point dilution assay at 0, 8, 16, 24, 36, 48, 72, 96 and 120 h p.i. Green fluorescence was used as a marker to determine positive viral infection. Each virus infection was carried out in triplicate. BV titres at different time p.i. were analysed by two-way analysis of variance in GQML (SPSS Inc.) with virus and time as factors. Mean BV titres of virus types were separated by Fisher’s least significant difference if significant effects were found. BV titres were logarithm transformed before analysis.

Bioassay of recombinant viruses. LD50 values of the recombinant HearNPVs (HaBacH28-eGFP-PH, HaBacAHa107-eGFP-PH and HaBac-rHa107-eGFP-PH) in third-instar *H. armigera* larvae were determined with five different doses (20, 60, 200, 600 and 2000 polyhedra per larva). Second-instar larvae were starved for 16 h at 28 ± 1 °C and allowed to moult into third instar. The starved larvae (4.61 ± 0.34 mg) were fed on a diet plug with 1 µl polyhedra suspension. The larvae that consumed the entire plug within 24 h were transferred to new diet. For each dose of each virus, 48 larvae were inoculated. Inoculated larvae were maintained at 28 ± 1 °C. Mortality was scored daily until surviving larvae in each treatment had either pupated or were in the pre-pupal stage. LD50 values and their standard deviations were determined by probit analysis using SPSS (SPSS Inc.). LD50 values of viruses were further compared using two-sided z-tests (Snedecor & Cochran, 1989).

Electron microscopy of recombinant virus-infected cells. HzAM1 cells were infected with HaBacH28-eGFP-PH or HaBacAHa107-eGFP-PH at an m.o.i. of 5. Infected cells were fixed at 60 h p.i. and processed for electron microscopic analysis as described previously (Wang et al., 2003).

Computational analysis. The Ha107 protein sequence was analysed using the ExPaSy server (Appel et al., 1994) (http://us.expasy.org) and CBS server (Jensen et al., 2003) (http://www.cbs.dtu.dk) for prediction of signal peptide, transmembrane domain and potential post-translational modification sites and subcellular localization. Homologues were explored using the BLAST network service on ExPaSy in the Swiss-Prot and TrEMBL databases (lambda, 0.327; K, 0.136; H, 0.405). The topology of the Ha107 protein homologues was predicted using TMHMM software. The topology was drawn according to the predicted results.

RESULTS

Sequence of Ha107 and its homologues. The Ha107 gene is located downstream of and in the same orientation as Ha106, a homologue of a superoxide dismutase (sod) gene (Chen et al., 2001) (Fig. 2a). The regions upstream of Ha107 were analysed for the presence of putative transcriptional initiation sites, such as baculovirus consensus early CAG/TT, late DTAAG promoter motifs and other transcriptional regulation elements, such as GATA and CACGTG. No consensus motif was found upstream of the Ha107 translational start codon ATG. A polyadenylation signal sequence (A)ATAAA was located 20 nt downstream of the putative translation stop codon TAA.

The coding region of Ha107 is 1374 nt and potentially encodes a 51 kDa protein of 457 aa. Using TMHMM software, ten transmembrane regions (including the signal peptide) were predicted, located at aa 7–29, 55–72, 84–103, 113–135, 191–213, 305–327, 334–352, 362–381, 394–416 and 426–448, and two hydrophilic loops were predicted at aa 136–190 and 214–304 (Fig. 1b). An N-terminal signal peptide was predicted and a potential cleavage site was found between aa 22 and 23 (YGA↓FK). Five potential N-linked glycosylation sites (aa 45–48, 145–148, 146–149, 223–226 and 331–334) were found using NetNglyc prediction. According to PSORTII analysis (Horton & Nakai, 1997), the putative HA107 protein is probably located in the endoplasmic reticulum.
localized in or associated with membrane structures. Only four homologous genes of \textit{Ha107} were found in the available baculovirus genomes (Fig. 1a) including ORF105 of SpltNPV (Pang et al., 2001; GenBank accession no. NC_003102), ORF22 of AgseNPV (Jakubowska et al., 2006; GenBank accession no. NC_007921), ORF22-23-24 of SeMNPV (IJkel et al., 1999; GenBank accession no. NC_002169) and ORF39 of AgseGV (unpublished data, GenBank accession no. NC_005839). The amino acid identity among these homologous proteins was low (20.1–47.4\%), but the predicted topological structure was rather conserved among the proteins from NPVs (Fig. 1b).

\textbf{Transcriptional mapping of the 3'} and 5' end of \textit{Ha107} transcripts}

To determine whether \textit{Ha107} was transcribed, 3'RACE analysis was performed with total RNA purified from mock-infected and HearNPV-infected HzAM1 cells at various times p.i. (Fig. 2b). A product of the expected size (620 bp) was first detected at 24 h p.i., which increased in amount up to 96 h p.i., suggesting that \textit{Ha107} is transcriptionally active, predominantly late during infection. The 3'RACE products from 48 h p.i. were cloned into pGEM-T Easy and sequenced. The obtained sequences mapped the 3' end of the \textit{Ha107} transcript at 38 nt downstream of the putative translation stop codon TAA and 13 nt downstream of the last A of the polyadenylation signal sequence AATAAA (Fig. 2c).

5'RACE was performed using total RNA extracted at 48 h p.i. from infected HzAM1 cells to determine the 5' end of the \textit{Ha107} transcripts. The lack of an initial PCR product using the first reverse primer (R1) necessitated the use of a nested primer (R2) to detect a PCR product (Fig. 2a). Five clones were sequenced and putative start sites were identified in two regions upstream of the \textit{Ha107} translational start site ATG. One start site was 33 nt upstream of the ATG codon of \textit{Ha107} at an A residue (Fig. 2d); the other was a C residue located at 11 nt upstream of the ATG codon of \textit{Ha106} (Fig. 2e). The presence of a 1.8 bp 5'RACE product also showed that \textit{Ha107} not only has its own transcription initiation site, but is also transcribed as one transcription unit together with \textit{Ha106} (sod).

\textbf{Time-course analysis of the HA107 protein in HearNPV-infected cells}

Synthesis of the HA107 protein in infected HzAM1 cells was followed by Western blot analysis using a polyclonal antiserum raised by immunization of a rabbit with a bacterially expressed truncated HA107 protein (GST–EX107). The results showed that anti-HA107 antiserum recognized two bands of 48 and 51 kDa, respectively, in infected cells (Fig. 3a). The major band (48 kDa) appeared at 24 h p.i. and reached maximum levels at 72 h p.i. The minor 51 kDa band, detected as early as 48 h p.i., was the same as the theoretical size of HA107. The protein levels remained relatively high throughout late times of infection. The size of the major protein form of HA107 was smaller than the predicted size of the putative HA107 translation product, possibly as the result of removal of the signal peptide.
Immunodetection of the HA107 protein in virions

To investigate whether or not HA107 is a structural component of HearNPV virions, Western blot and IEM analyses were conducted. Western blot analysis using anti-HA107 antiserum recognized a 48 kDa band in ODV and BV, specifically in the nucleocapsid fractions (Fig. 3b). These data indicated that the HA107 protein is a structural component of the nucleocapsids of both BV and ODV. To study the location of HA107 further, IEM analysis was used and showed that the anti-HA107 antiserum recognized only the nucleocapsids and not ODVs with intact envelope (Fig. 3c). This observation further confirmed that HA107 is a nucleocapsid-associated protein.
Construction of Ha107 knockout and repair HearNPV bacmids

To investigate the role of Ha107 during the viral infection cycle, a Ha107 knockout virus (HaBacΔHa107) was generated from the HearNPV bacmid HaBacHZ8 (Wang et al., 2003). The λ phage Red homologous recombination system (Hou et al., 2002) was used to obtain the Ha107 knockout bacmid. PCR analysis and EcoRI digestion were used to verify the construct. As expected, with primers CM and EnF, a PCR product of 530 bp was amplified from HaBacΔHa107 but not from the control bacmid HaBacHZ8, and with primers ExF and ExR, a 524 bp PCR product was amplified from HaBacHZ8 but not from HaBacΔHa107 (Fig. 4c). EcoRI digestion profiles revealed that the 5.99 kb EcoRI fragment from HaBacHZ8 containing HA107 was replaced by two smaller EcoRI fragments of 2.91 and 2.92 kb in HaBacΔHa107 (Fig. 4b) indicating correct insertion of the CmR gene. Therefore, the Ha107 gene was successfully eliminated in HaBacΔHa107.

The egfp and ph genes were inserted into HaBacHZ8 and HaBacΔHa107 to generate HaBacHZ8-eGFP-PH and HaBacΔHa107-eGFP-PH (Fig. 4a). To rescue the wild-type phenotype of the Ha107 knockout, a repair bacmid, HaBac-rHa107-eGFP-PH, was constructed. The Ha107 cassette with its own promoter was inserted into the polyhedrin locus of HaBacΔHa107 by Tn7-mediated transposition to give HaBac-rHa107-eGFP-PH (Fig. 4a).

All insertion constructs were confirmed by PCR analysis (data not shown).

Viral replication in HzAM1 cells

To determine whether Ha107 is essential for viral replication, HzAM1 cells were transfected separately with HaBacΔHa107-eGFP-PH, HaBacHZ8-eGFP-PH and HaBac-rHa107-eGFP-PH bacmids and the transfection assay was monitored by eGFP expression. At 4 days post-transfection, green fluorescence and polyhedra formation were detected in all transfections. The supernatants were collected at 5 days post-transfection and used to infect fresh HzAM1 cells. After 3 days, green fluorescence was clearly observed in cells infected with each of the recombinant viruses (Fig. 5a). Western blot analysis of purified BVs of HaBacΔHa107-eGFP-PH, HaBac-rHa107-eGFP-PH and HaBacHZ8-eGFP-PH was performed to confirm the effective removal of Ha107 (Fig. 4d). The HA107 protein was detected in BVs of both HaBac-rHa107-eGFP-PH and HaBacHZ8-eGFP-PH, but not in HaBacΔHa107-eGFP-PH. These results indicated that Ha107 is not essential for viral replication and propagation in cell culture.

A virus growth curve assay was performed to study further the possible effect of deletion of Ha107 on viral replication.
HzAM1 cells were infected separately with HaBacΔHa107-eGFP-PH, HaBacHZ8-eGFP-PH or HaBac-rHa107-eGFP-PH at an m.o.i. of 10. Statistical analysis revealed that HaBacΔHa107-eGFP-PH produced BV to a significantly higher titre than HaBacHZ8-eGFP-PH (F = 100.84, d.f. = 1, 54; P < 0.01) and the HA107 rescue virus HaBac-rHa107-eGFP-PH (F = 100.84, d.f. = 1, 54; P < 0.01) (Fig. 5b).

DISCUSSION

In this study, we have reported the characterization of the Ha107 gene and its role in virus infection. The existence of Ha107 homologues in several NPVs (HearNPV, SpltNPV, SeMNPV and AgseNPV) and their phylogenetic position in

Fig. 5. Analysis of virus replication of HaBacΔHa107-eGFP-PH, HaBacHZ8-eGFP-PH and HaBac-rHa107-eGFP-PH in infected HzAM1 cells. (a) Fluorescence (upper panel) and light microscopy (lower panel) of HzAM1 cells infected with HaBacΔHa107-eGFP-PH, HaBacHZ8-eGFP-PH or HaBac-rHa107-eGFP-PH, analysed at 72 h p.i. (b) Virus growth curves of HaBacΔHa107-eGFP-PH, HaBacHZ8-eGFP-PH and HaBac-rHa107-eGFP-PH in HzAM1 cells. Cells (3.0 x 10⁶) were infected at an m.o.i. of 10 for each virus and the supernatant was harvested at the indicated time points p.i. and assayed for the production of infectious virus by end-point dilution assay. Each point represents the average titre derived from three independent TCID₅₀ assays. Error bars represent SEM.

Fig. 6. Electron microscopy of cells infected with the recombinant viruses. HzAM1 cells were infected with HaBacΔHa107-eGFP-PH or HaBacHZ8-eGFP-PH at an m.o.i. of 5. Cells were fixed at 60 h p.i. Nu, nucleus; NM, nuclear membrane; V, virion; PE, polyhedron envelope.

Polyhedra formation and oral infectivity

At 60 h p.i., polyhedra were seen by light microscopy in the nuclei of HzAM1 cells infected with HaBacΔHa107-eGFP-PH, HaBacHZ8-eGFP-PH and HaBac-rHa107-eGFP-PH (Fig. 5a). Infected cells were harvested and analysed by electron microscopy, which revealed the formation of polyhedra containing large numbers of occluded virions (Fig. 6). Polyhedra with singly enveloped virions in HaBacΔHa107-eGFP-PH-infected cells had a similar shape and size to those of HaBacHZ8-eGFP-PH. These results indicated that the absence of Ha107 did not appear to influence the formation and structure of polyhedra or ODVs.

The infectivity of the recombinant viruses was assayed in *H. armigera* larvae (Table 1). Third-instar larvae were fed polyhedra of HaBacΔHa107-eGFP-PH, HaBac-rHa107-eGFP-PH or HaBacHZ8-eGFP-PH and mortality was monitored daily. The results showed that HaBacΔHa107-eGFP-PH was infectious to *H. armigera* larvae, indicating that HA107 is not essential for infectivity in *vivo*. Notably, its LD₅₀ was about 10 times higher than that of the control virus (z = 4.972, P < 0.01) and 15 times higher than that of the Ha107 repair virus (z = 5.181, P < 0.01) (Table 1). Statistically, the difference between the LD₅₀ values of the control virus and Ha107 repair virus was not significant (z = 1.598, P > 0.05). The slopes of the regression lines between mortality (probit) and log (dose) of these three viruses were not significantly different from each other (z = 0.885, P > 0.05, for HaBacΔHa107-eGFP-PH and HaBacHZ8-eGFP-PH; z = 1.656, P > 0.05, for HaBacΔHa107-eGFP-PH and HaBac-rHa107-eGFP-PH; z = 0.663, P > 0.05, for HaBac-rHa107-eGFP-PH and HaBacHZ8-eGFP-PH).
a common clade (Jakubowska et al., 2006) suggest that the Ha107 gene may have been derived from an ancestral virus. The observation that only one GV (AgseGV) has this gene might be explained by the fact that AgseGV and AgseNPV have the same host, A. segetum, and horizontal gene transfer may have occurred.

Ha107 potentially encodes a 51 kDa protein, but two forms of this protein (51 and 48 kDa) were found in infected cells. The smaller but major form (48 kDa) was present in nucleocapsids in both BV and ODV as elucidated by Western blot analysis (Fig. 3). This is in line with the possibility that the predicted 22 aa signal peptide is removed upon entry into the endoplasmic reticulum. Whether this is actually the case would require N-terminal sequencing of the Ha107 protein and immunolocalization studies in the cell. The size difference could also be attributed to other post-translational modifications such as glycosylation.

On the basis of the predicted protein structure (Fig. 1), HA107 was predicted to have multiple transmembrane regions. However, HA107 was only found in the nucleocapsid fraction and not in the envelope fraction of BV or ODV, as evidenced by Western blot analysis (Fig. 3b). IEM of ODV and its nucleocapsid confirmed that HA107 is associated with the nucleocapsid and not with the envelope of intact virions (Fig. 3c). Whether HA107 is also a transmembrane component needs to be studied further.

Temporal transcription and expression analysis showed that Ha107 was active predominantly at the late stage in the infection cycle. This is in agreement with the observation that HA107 is a structural component of BV and ODV virions, which assemble relatively late after infection (Fig. 3a). Mapping of Ha107 transcripts by 5’RACE showed that Ha107 transcription was initiated at two distinct locations: one located at 33 nt upstream of the ATG of Ha107, within a sequence without a clear baculovirus consensus transcriptional initiation motif, and the other located 11 nt upstream of the ATG of Ha106 (sod). This suggests the presence of two types of transcript, a short transcript of Ha107 and a long transcript encompassing Ha106 and Ha107, co-terminating at the same 3’ end. This observation was also supported by the absence of putative transcriotional termination signal sequences downstream of the Ha106 gene (Fig. 2e). This 3’-terminal transcript was identified here for the first time in HearNPV, but is common in group I NPVs such as AcMNPV (Friesen & Miller, 1985). The repair virus HaBac-rHa107-eGFP-PH possessed similar replication characteristics (Fig. 5b) and LD50 values (Table 1) to the control virus HaBacHZ8-eGFP-PH, indicating that the function of Ha107 can be rescued by reintroduction of the Ha107 gene at a different locus in the HearNPV genome. These results also indicated that a short Ha107 transcript is enough to produce a functional protein and that the presence of a long transcript encompassing Ha106 and Ha107 does not appear to be necessary for the function of the Ha107 gene.

The Ha107 knockout mutant HaBacΔ107-eGFP-PH was able to infect and propagate in cell culture producing polyhedra and infectious BV progeny (Fig. 5). Polyhedra were also able to infect H. armigera larvae. Interestingly, the BV titre of HaBacΔ107-eGFP-PH was much higher than the control virus and the Ha107 repair virus (Fig. 5b), whilst the LD50 of HaBacΔ107-eGFP-PH was significantly higher than that of the control and repair viruses. These results indicate that the HA107 protein is not essential for virus replication in vivo and in cell culture, but somehow directly or indirectly modulates virus infectivity.

It remains unknown why the deletion of Ha107 results in an increased BV titre and LD50 of the Ha107 knockout virus. It is also not known whether the function of Ha107 as a structural component is related to its function affecting infectivity. The existence of Ha107 homologues in several baculoviruses (Fig. 1) suggest that the gene may have been derived from an ancestral virus, and it may still play a role in infection of viruses containing this gene.

ACKNOWLEDGEMENTS

This research was sponsored by NSFC grant no. 30630002 and 973 project no. 2003CB114202 to Z. H. and by joint grants to Z. H. and J. M. V. (Program Strategic Alliances projects 2004CB720404 and 04-PSA-BD-02 and KNAW project 03CDP012). The authors would like to thank Ms Yanfang Zhang and Mr Liang Jin for technical support and Dr Basil M. Arif for scientific editing of the manuscript.

REFERENCES

X. Pan and others

