1887

Abstract

Since the first generation of a negative-sense RNA virus entirely from cloned cDNA in 1994, similar reverse genetics systems have been established for members of most genera of the - and families, as well as for Ebola virus (). The generation of segmented negative-sense RNA viruses was technically more challenging and has lagged behind the recovery of nonsegmented viruses, primarily because of the difficulty of providing more than one genomic RNA segment. A member of the family (whose genome is composed of three RNA segments) was first generated from cloned cDNA in 1996, followed in 1999 by the production of influenza virus, which contains eight RNA segments. Thus, reverse genetics, or the synthesis of negative-sense RNA viruses from cloned cDNA, has become a reliable laboratory method that can be used to study this large group of medically and economically important viruses. It provides a powerful tool for dissecting the virus life cycle, virus assembly, the role of viral proteins in pathogenicity and the interplay of viral proteins with components of the host cell immune response. Finally, reverse genetics has opened the way to develop live attenuated virus vaccines and vaccine vectors.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2635
2002-11-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832635a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2635&mimeType=html&fmt=ahah

References

  1. Atreya P. L., Kulkarni S. 1999; Respiratory syncytial virus strain A2 is resistant to the antiviral effects of type I interferons and human MxA. Virology 261:227–241
    [Google Scholar]
  2. Atreya P. L., Peeples M. E., Collins P. L. 1998; The NS1 protein of human respiratory syncytial virus is a potent inhibitor of minigenome transcription and RNA replication. Journal of Virology 72:1452–1461
    [Google Scholar]
  3. Baczko K., Cater M. J., Billeter M., ter Meulen V. 1984; Measles virus gene expression in subacute sclerosing panencephalitis. Virus Research 1:585–595
    [Google Scholar]
  4. Bailly J. E., McAuliffe J. M., Durbin A. P., Elkins W. R., Collins P. L., Murphy B. R. 2000; A recombinant human parainfluenza virus type 3 (PIV3) in which the nucleocapsid N protein has been replaced by that of bovine PIV3 is attenuated in primates. Journal of Virology 74:3188–3195
    [Google Scholar]
  5. Ball L. A., Pringle C. R., Flanagan B., Perepelitsa V. P., Wertz G. W. 1999; Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. Journal of Virology 73:4705–4712
    [Google Scholar]
  6. Barclay W. S., Palese P. 1995; Influenza B viruses with site-specific mutations introduced into the HA gene. Journal of Virology 69:1275–1279
    [Google Scholar]
  7. Baron M. D., Barrett T. 1997; Rescue of rinderpest virus from cloned cDNA. Journal of Virology 71:1265–1271
    [Google Scholar]
  8. Baron M. D., Barrett T. 2000; Rinderpest viruses lacking the C and V proteins show specific defects in growth and transcription of viral RNAs. Journal of Virology 74:2603–2611
    [Google Scholar]
  9. Barr J. N., Wertz G. W. 2001; Polymerase slippage at vesicular stomatitis virus gene junctions to generate poly(A) is regulated by the upstream 3′-AUAC-5′ tetranucleotide: implications for the mechanism of transcription termination. Journal of Virology 75:6901–6913
    [Google Scholar]
  10. Barr J. N., Whelan S. P., Wertz G. W. 1997a; Cis -acting signals involved in termination of vesicular stomatitis virus mRNA synthesis include the conserved AUAC and the U7 signal for polyadenylation. Journal of Virology 71:8718–8725
    [Google Scholar]
  11. Barr J. N., Whelan S. P., Wertz G. W. 1997b; Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. Journal of Virology 71:1794–1801
    [Google Scholar]
  12. Basler C. F., Reid A. H., Dybing J. K., Janczewski T. A., Fanning T. G., Zheng H., Salvatore M., Perdue M. L., Swayne D. E., Garcia-Sastre A., Palese P., Taubenberger J. K. 2001; From the cover: sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses bearing the 1918 NS genes. Proceedings of the National Academy of Sciences, USA 98:2746–2751
    [Google Scholar]
  13. Belshe R. B., Mendelman P. M., Treanor J., King J., Gruber W. C., Piedra P., Bernstein D. I., Hayden F. G., Kotloff K., Zangwill K., Iacuzio D., Wolff M. 1998; The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine in children. New England Journal of Medicine 338:1405–1412
    [Google Scholar]
  14. Bergmann M., Muster T. 1996; Mutations in the nonconserved noncoding sequences of the influenza A virus segments affect viral vRNA formation. Virus Research 44:23–31
    [Google Scholar]
  15. Bergmann M., Garcia-Sastre A., Carnero E., Pehamberger H., Wolff K., Palese P., Muster T. 2000; Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. Journal of Virology 74:6203–6206
    [Google Scholar]
  16. Bermingham A., Collins P. L. 1999; The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription. Proceedings of the National Academy of Sciences, USA 96:11259–11264
    [Google Scholar]
  17. Bilsel P., Castrucci M. R., Kawaoka Y. 1993; Mutations in the cytoplasmic tail of influenza A virus neuraminidase affect incorporation into virions. Journal of Virology 67:6762–6767
    [Google Scholar]
  18. Boritz E., Gerlach J., Johnson J. E., Rose J. K. 1999; Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway. Journal of Virology 73:6937–6945
    [Google Scholar]
  19. Boyce T. G., Poland G. A. 2000; Promises and challenges of live-attenuated intranasal influenza vaccines across the age spectrum: a review. Biomedicine & Pharmacotherapy 54:210–218
    [Google Scholar]
  20. Bridgen A., Elliott R. M. 1996; Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proceedings of the National Academy of Sciences, USA 93:15400–15404
    [Google Scholar]
  21. Buchholz U. J., Finke S., Conzelmann K. K. 1999; Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. Journal of Virology 73:251–259
    [Google Scholar]
  22. Buchholz U. J., Granzow H., Schuldt K., Whitehead S. S., Murphy B. R., Collins P. L. 2000; Chimeric bovine respiratory syncytial virus with glycoprotein gene substitutions from human respiratory syncytial virus (HRSV): effects on host range and evaluation as a live-attenuated HRSV vaccine. Journal of Virology 74:1187–1199
    [Google Scholar]
  23. Buchmeier M. J., Bowen M. D., Peters C. J. 2001; Arenaviridae : The viruses and their replication. In Fields Virology pp 1635–1668 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  24. Bukreyev A., Camargo E., Collins P. L. 1996; Recovery of infectious respiratory syncytial virus expressing an additional, foreign gene. Journal of Virology 70:6634–6641
    [Google Scholar]
  25. Bukreyev A., Whitehead S. S., Murphy B. R., Collins P. L. 1997; Recombinant respiratory syncytial virus from which the entire SH gene has been deleted grows efficiently in cell culture and exhibits site-specific attenuation in the respiratory tract of the mouse. Journal of Virology 71:8973–8982
    [Google Scholar]
  26. Bukreyev A., Whitehead S. S., Bukreyeva N., Murphy B. R., Collins P. L. 1999; Interferon-γ expressed by a recombinant respiratory syncytial virus attenuates virus replication in mice without compromising immunogenicity. Proceedings of the National Academy of Sciences, USA 96:2367–2372
    [Google Scholar]
  27. Bukreyev A., Murphy B. R., Collins P. L. 2000a; Respiratory syncytial virus can tolerate an intergenic sequence of at least 160 nucleotides with little effect on transcription or replication in vitro and in vivo . Journal of Virology 74:11017–11026
    [Google Scholar]
  28. Bukreyev A., Whitehead S. S., Prussin C., Murphy B. R., Collins P. L. 2000b; Effect of coexpression of interleukin-2 by recombinant respiratory syncytial virus on virus replication, immunogenicity, and production of other cytokines. Journal of Virology 74:7151–7157
    [Google Scholar]
  29. Cadd T., Garcin D., Tapparel C., Itoh M., Homma M., Roux L., Curran J., Kolakofsky D. 1996; The Sendai paramyxovirus accessory C proteins inhibit viral genome amplification in a promoter-specific fashion. Journal of Virology 70:5067–5074
    [Google Scholar]
  30. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. Journal of Virology 67:4822–4830
    [Google Scholar]
  31. Calain P., Roux L. 1995; Functional characterization of the genomic and antigenomic promoters of Sendai virus. Virology 212:163–173
    [Google Scholar]
  32. Calain P., Curran J., Kolakofsky D., Roux L. 1992; Molecular cloning of natural paramyxovirus copy-back defective interfering RNAs and their expression from DNA. Virology 191:62–71
    [Google Scholar]
  33. Castrucci M. R., Kawaoka Y. 1993; Biologic importance of neuraminidase stalk length in influenza A virus. Journal of Virology 67:759–764
    [Google Scholar]
  34. Castrucci M. R., Kawaoka Y. 1995; Reverse genetics system for generation of an influenza A virus mutant containing a deletion of the carboxyl-terminal residue of M2 protein. Journal of Virology 69:2725–2728
    [Google Scholar]
  35. Castrucci M. R., Bilsel P., Kawaoka Y. 1992; Attenuation of influenza A virus by insertion of a foreign epitope into the neuraminidase. Journal of Virology 66:4647–4653
    [Google Scholar]
  36. Castrucci M. R., Hou S., Doherty P. C., Kawaoka Y. 1994; Protection against lethal lymphocytic choriomeningitis virus (LCMV) infection by immunization of mice with an influenza virus containing an LCMV epitope recognized by cytotoxic T lymphocytes. Journal of Virology 68:3486–3490
    [Google Scholar]
  37. Castrucci M. R., Hughes M., Calzoletti L., Donatelli I., Wells K., Takada A., Kawaoka Y. 1997; The cysteine residues of the M2 protein are not required for influenza A virus replication. Virology 238:128–134
    [Google Scholar]
  38. Cathomen T., Mrkic B., Spehner D., Drillien R., Naef R., Pavlovic J., Aguzzi A., Billeter M. A., Cattaneo R. 1998a; A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain. EMBO Journal 17:3899–3908
    [Google Scholar]
  39. Cathomen T., Naim H. Y., Cattaneo R. 1998b; Measles viruses with altered envelope protein cytoplasmic tails gain cell fusion competence. Journal of Virology 72:1224–1234
    [Google Scholar]
  40. Cheng X., Zhou H., Tang R. S., Munoz M. G., Jin H. 2001; Chimeric subgroup A respiratory syncytial virus with the glycoproteins substituted by those of subgroup B and RSV without the M2-2 gene are attenuated in African green monkeys. Virology 283:59–68
    [Google Scholar]
  41. Clarke D. K., Sidhu M. S., Johnson J. E., Udem S. A. 2000; Rescue of mumps virus from cDNA. Journal of Virology 74:4831–4838
    [Google Scholar]
  42. Collins P. L., Mink M. A., Stec D. S. 1991; Rescue of synthetic analogs of respiratory syncytial virus genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proceedings of the National Academy of Sciences, USA 88:9663–9667
    [Google Scholar]
  43. Collins P. L., Hill M. G., Camargo E., Grosfeld H., Chanock R. M., Murphy B. R. 1995; Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5′ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proceedings of the National Academy of Sciences, USA 92:11563–11567
    [Google Scholar]
  44. Collins P. L., Hill M. G., Cristina J., Grosfeld H. 1996; Transcription elongation factor of respiratory syncytial virus, a nonsegmented negative-strand RNA virus. Proceedings of the National Academy of Sciences, USA 93:81–85
    [Google Scholar]
  45. Collins P. L., Whitehead S. S., Bukreyev A., Fearns R., Teng M. N., Juhasz K., Chanock R. M., Murphy B. R. 1999; Rational design of live-attenuated recombinant vaccine virus for human respiratory syncytial virus by reverse genetics. Advances in Virus Research 54:423–451
    [Google Scholar]
  46. Conzelmann K. K. 1996; Genetic manipulation of non-segmented negative-strand RNA viruses. Journal of General Virology 77:381–389
    [Google Scholar]
  47. Conzelmann K. K. 1998; Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annual Review of Genetics 32:123–162
    [Google Scholar]
  48. Conzelmann K. K., Meyers G. 1996; Genetic engineering of animal RNA viruses. Trends in Microbiology 4:386–393
    [Google Scholar]
  49. Conzelmann K. K., Cox J. H., Thiel H. J. 1991; An L (polymerase)-deficient rabies virus defective interfering particle RNA is replicated and transcribed by heterologous helper virus L proteins. Virology 184:655–663
    [Google Scholar]
  50. Cox N. J., Kitame F., Klimov A., Koennecke I., Kendal A. P. 1986; Comparative studies of wild-type and cold-mutant (temperature-sensitive) influenza virus: detection of mutations in all genes of the A/Ann Arbor/6/60 (H2N2) mutant vaccine donor strain. Microbial Pathogenesis 1:387–397
    [Google Scholar]
  51. Cox N. J., Kitame F., Kendal A. P., Maassab H. F., Naeve C. 1988; Identification of sequence changes in the cold-adapted, live attenuated influenza vaccine strain. A/Ann Arbor/6/60 (H2N2). Virology 167:554–567
    [Google Scholar]
  52. Cross K. J., Wharton S. A., Skehel J. J., Wiley D. C., Steinhauer D. A. 2001; Studies on influenza haemagglutinin fusion peptide mutants generated by reverse genetics. EMBO Journal 20:4432–4442
    [Google Scholar]
  53. Curran J., Kolakofsky D. 1999; Replication of paramyxoviruses. Advances in Virus Research 54:403–422
    [Google Scholar]
  54. Das T., Pattnaik A. K., Takacs A. M., Li T., Hwang L. N., Banerjee A. K. 1997; Basic amino acid residues at the carboxy-terminal eleven amino acid region of the phosphoprotein (P) are required for transcription but not for replication of vesicular stomatitis virus genome RNA. Virology 238:103–114
    [Google Scholar]
  55. Das T., Chakrabarti B. K., Chattopadhyay D., Banerjee A. K. 1999; Carboxy-terminal five amino acids of the nucleocapsid protein of vesicular stomatitis virus are required for encapsidation and replication of genome RNA. Virology 259:219–227
    [Google Scholar]
  56. Das S. C., Baron M. D., Barrett T. 2000; Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus: homologous F and H proteins are required for virus viability. Journal of Virology 74:9039–9047
    [Google Scholar]
  57. De B. P., Gupta S., Banerjee A. K. 1995; Cellular protein kinase C isoform ζ regulates human parainfluenza virus type 3 replication. Proceedings of the National Academy of Sciences, USA 92:5204–5208
    [Google Scholar]
  58. De B. P., Hoffman M. A., Choudhary S., Huntley C. C., Banerjee A. K. 2000; Role of NH2- and COOH-terminal domains of the P protein of human parainfluenza virus type 3 in transcription and replication. Journal of Virology 74:5886–5895
    [Google Scholar]
  59. de la Torre J. C. 2001; Bornaviridae . In Fields Virology pp 1669–1678 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  60. Delenda C., Hausmann S., Garcin D., Kolakofsky D. 1997; Normal cellular replication of Sendai virus without the trans-frame, nonstructural V protein. Virology 228:55–62
    [Google Scholar]
  61. Delenda C., Taylor G., Hausmann S., Garcin D., Kolakofsky D. 1998; Sendai viruses with altered P, V, and W protein expression. Virology 242:327–337
    [Google Scholar]
  62. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999a; Sendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. Journal of Virology 73:3125–3133
    [Google Scholar]
  63. Didcock L., Young D. F., Goodbourn S., Randall R. E. 1999b; The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. Journal of Virology 73:9928–9933
    [Google Scholar]
  64. Dimock K., Collins P. L. 1993; Rescue of synthetic analogs of genomic RNA and replicative-intermediate RNA of human parainfluenza virus type 3. Journal of Virology 67:2772–2778
    [Google Scholar]
  65. Donnelly M. L., Hughes L. E., Luke G., Mendoza H., ten Dam E., Gani D., Ryan M. D. 2001; The ‘cleavage’ activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. Journal of General Virology 82:1027–1041
    [Google Scholar]
  66. Dunn E. F., Pritlove D. C., Jin H., Elliott R. M. 1995; Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211:133–143
    [Google Scholar]
  67. Duprex W. P., Duffy I., McQuaid S., Hamill L., Cosby S. L., Billeter M. A., Schneider-Schaulies J., ter Meulen V., Rima B. K. 1999; The H gene of rodent brain-adapted measles virus confers neurovirulence to the Edmonston vaccine strain. Journal of Virology 73:6916–6922
    [Google Scholar]
  68. Durbin A. P., Hall S. L., Siew J. W., Whitehead S. S., Collins P. L., Murphy B. R. 1997a; Recovery of infectious human parainfluenza virus type 3 from cDNA. Virology 235:323–332
    [Google Scholar]
  69. Durbin A. P., Siew J. W., Murphy B. R., Collins P. L. 1997b; Minimum protein requirements for transcription and RNA replication of a minigenome of human parainfluenza virus type 3 and evaluation of the rule of six. Virology 234:74–83
    [Google Scholar]
  70. Durbin A. P., McAuliffe J. M., Collins P. L., Murphy B. R. 1999; Mutations in the C, D, and V open reading frames of human parainfluenza virus type 3 attenuate replication in rodents and primates. Virology 261:319–330
    [Google Scholar]
  71. Durbin A. P., Skiadopoulos M. H., McAuliffe J. M., Riggs J. M., Surman S. R., Collins P. L., Murphy B. R. 2000; Human parainfluenza virus type 3 (PIV3) expressing the hemagglutinin protein of measles virus provides a potential method for immunization against measles virus and PIV3 in early infancy. Journal of Virology 74:6821–6831
    [Google Scholar]
  72. Enami M., Luytjes W., Krystal M., Palese P. 1990; Introduction of site-specific mutations into the genome of influenza virus. Proceedings of the National Academy of Sciences, USA 87:3802–3805
    [Google Scholar]
  73. Escoffier C., Manie S., Vincent S., Muller C. P., Billeter M., Gerlier D. 1999; Nonstructural C protein is required for efficient measles virus replication in human peripheral blood cells. Journal of Virology 73:1695–1698
    [Google Scholar]
  74. Fearns R., Collins P. L. 1999; Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription. Journal of Virology 73:5852–5864
    [Google Scholar]
  75. Fearns R., Peeples M. E., Collins P. L. 1997; Increased expression of the N protein of respiratory syncytial virus stimulates minigenome replication but does not alter the balance between the synthesis of mRNA and antigenome. Virology 236:188–201
    [Google Scholar]
  76. Fearns R., Collins P. L., Peeples M. E. 2000; Functional analysis of the genomic and antigenomic promoters of human respiratory syncytial virus. Journal of Virology 74:6006–6014
    [Google Scholar]
  77. Finke S., Conzelmann K. K. 1999; Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. Journal of Virology 73:3818–3825
    [Google Scholar]
  78. Finke S., Cox J. H., Conzelmann K. K. 2000; Differential transcription attenuation of rabies virus genes by intergenic regions: generation of recombinant viruses overexpressing the polymerase gene. Journal of Virology 74:7261–7269
    [Google Scholar]
  79. Flanagan E. B., Ball L. A., Wertz G. W. 2000; Moving the glycoprotein gene of vesicular stomatitis virus to promoter-proximal positions accelerates and enhances the protective immune response. Journal of Virology 74:7895–7902
    [Google Scholar]
  80. Flanagan E. B., Zamparo J. M., Ball L. A., Rodriguez L. L., Wertz G. W. 2001; Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. Journal of Virology 75:6107–6114
    [Google Scholar]
  81. Flick R., Hobom G. 1999; Interaction of influenza virus polymerase with viral RNA in the ‘corkscrew’ conformation. Journal of General Virology 80:2565–2572
    [Google Scholar]
  82. Flick R., Pettersson R. F. 2001; Reverse genetics system for Uukuniemi virus ( Bunyaviridae ): RNA polymerase I-catalyzed expression of chimeric viral RNAs. Journal of Virology 75:1643–1655
    [Google Scholar]
  83. Flick R., Neumann G., Hoffmann E., Neumeier E., Hobom G. 1996; Promoter elements in the influenza vRNA terminal structure. RNA 2:1046–1057
    [Google Scholar]
  84. Fodor E., Seong B. L., Brownlee G. G. 1993; Photochemical cross-linking of influenza A polymerase to its virion RNA promoter defines a polymerase binding site at residues 9 to 12 of the promoter. Journal of General Virology 74:1327–1333
    [Google Scholar]
  85. Fodor E., Pritlove D. C., Brownlee G. G. 1994; The influenza virus panhandle is involved in the initiation of transcription. Journal of Virology 68:4092–4096
    [Google Scholar]
  86. Fodor E., Pritlove D. C., Brownlee G. G. 1995; Characterization of the RNA-fork model of virion RNA in the initiation of transcription in influenza A virus. Journal of Virology 69:4012–4019
    [Google Scholar]
  87. Fodor E., Devenish L., Engelhardt O. G., Palese P., Brownlee G. G., Garcia-Sastre A. 1999; Rescue of influenza A virus from recombinant DNA. Journal of Virology 73:9679–9682
    [Google Scholar]
  88. Fouillot-Coriou N., Roux L. 2000; Structure-function analysis of the Sendai virus F and HN cytoplasmic domain: different role for the two proteins in the production of virus particle. Virology 270:464–475
    [Google Scholar]
  89. Garcia-Sastre A. 2000; Transfectant influenza viruses as antigen delivery vectors. Advances in Virus Research 55:579–597
    [Google Scholar]
  90. Garcia-Sastre A. 2001; Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279:375–384
    [Google Scholar]
  91. Garcia-Sastre A., Palese P. 1993; Genetic manipulation of negative-strand RNA virus genomes. Annual Review of Microbiology 47:765–790
    [Google Scholar]
  92. Garcia-Sastre A., Palese P. 1995; The cytoplasmic tail of the neuraminidase protein on influenza A virus does not play an important role in the packaging of this protein into viral envelopes. Virus Research 37:37–47
    [Google Scholar]
  93. Garcia-Sastre A., Muster T., Barclay W. S., Percy N., Palese P. 1994a; Use of a mammalian internal ribosomal entry site element for expression of a foreign protein by a transfectant influenza virus. Journal of Virology 68:6254–6261
    [Google Scholar]
  94. Garcia-Sastre A., Percy N., Barclay W., Palese P. 1994b; Introduction of foreign sequences into the genome of influenza A virus. Developments in Biological Standardization 82:237–246
    [Google Scholar]
  95. Garcia-Sastre A., Egorov A., Matassov D., Brandt S., Levy D. E., Durbin J. E., Palese P., Muster T. 1998; Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252:324–330
    [Google Scholar]
  96. Garcin D., Pelet T., Calain P., Roux L., Curran J., Kolakofsky D. 1995; A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus. EMBO Journal 14:6087–6094
    [Google Scholar]
  97. Garcin D., Itoh M., Kolakofsky D. 1997; A point mutation in the Sendai virus accessory C proteins attenuates virulence for mice, but not virus growth in cell culture. Virology 238:424–431
    [Google Scholar]
  98. Garcin D., Latorre P., Kolakofsky D. 1999; Sendai virus C proteins counteract the interferon-mediated induction of an antiviral state. Journal of Virology 73:6559–6565
    [Google Scholar]
  99. Garcin D., Curran J., Kolakofsky D. 2000; Sendai virus C proteins must interact directly with cellular components to interfere with interferon action. Journal of Virology 74:8823–8830
    [Google Scholar]
  100. Garcin D., Curran J., Itoh M., Kolakofsky D. 2001; Longer and shorter forms of Sendai virus C proteins play different roles in modulating the cellular antiviral response. Journal of Virology 75:6800–6807
    [Google Scholar]
  101. Gassen U., Collins F. M., Duprex W. P., Rima B. K. 2000; Establishment of a rescue system for canine distemper virus. Journal of Virology 74:10737–10744
    [Google Scholar]
  102. Gilleland H. E. Jr, Gilleland L. B., Staczek J., Harty R. N., Garcia-Sastre A., Engelhardt O. G., Palese P. 1997; Chimeric influenza viruses incorporating epitopes of outer membrane protein F as a vaccine against pulmonary infection with Pseudomonas aeruginosa . Behring Institute Mitteilungen 98:291–301
    [Google Scholar]
  103. Gomez-Puertas P., Mena I., Castillo M., Vivo A., Perez-Pastrana E., Portela A. 1999; Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins. Journal of General Virology 80:1635–1645
    [Google Scholar]
  104. Gomez-Puertas P., Albo C., Perez-Pastrana E., Vivo A., Portela A. 2000; Influenza virus matrix protein is the major driving force in virus budding. Journal of Virology 74:11538–11547
    [Google Scholar]
  105. Goto H., Kawaoka Y. 1998; A novel mechanism for the acquisition of virulence by a human influenza A virus. Proceedings of the National Academy of Sciences, USA 95:10224–10228
    [Google Scholar]
  106. Goto H., Wells K., Takada A., Kawaoka Y. 2001; Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. Journal of Virology 75:9297–9301
    [Google Scholar]
  107. Gotoh B., Takeuchi K., Komatsu T., Yokoo J., Kimura Y., Kurotani A., Kato A., Nagai Y. 1999; Knockout of the Sendai virus C gene eliminates the viral ability to prevent the interferon-α/ β-mediated responses. FEBS Letters 459:205–210
    [Google Scholar]
  108. Haglund K., Forman J., Krausslich H. G., Rose J. K. 2000; Expression of human immunodeficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology 268:112–121
    [Google Scholar]
  109. Haller A. A., Miller T., Mitiku M., Coelingh K. 2000; Expression of the surface glycoproteins of human parainfluenza virus type 3 by bovine parainfluenza virus type 3, a novel attenuated virus vaccine vector. Journal of Virology 74:11626–11635
    [Google Scholar]
  110. Hardy R. W., Wertz G. W. 1998; The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription. Journal of Virology 72:520–526
    [Google Scholar]
  111. Hardy R. W., Harmon S. B., Wertz G. W. 1999; Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2-mediated antitermination. Journal of Virology 73:170–176
    [Google Scholar]
  112. Harty R. N., Palese P. 1995; Mutations within noncoding terminal sequences of model RNAs of Sendai virus: influence on reporter gene expression. Journal of Virology 69:5128–5131
    [Google Scholar]
  113. Hasan M. K., Kato A., Shioda T., Sakai Y., Yu D., Nagai Y. 1997; Creation of an infectious recombinant Sendai virus expressing the firefly luciferase gene from the 3′ proximal first locus. Journal of General Virology 78:2813–2820
    [Google Scholar]
  114. Hasan M. K., Kato A., Muranaka M., Yamaguchi R., Sakai Y., Hatano I., Tashiro M., Nagai Y. 2000; Versatility of the accessory C proteins of Sendai virus: contribution to virus assembly as an additional role. Journal of Virology 74:5619–5628
    [Google Scholar]
  115. Hatada E., Saito S., Fukuda R. 1999; Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. Journal of Virology 73:2425–2433
    [Google Scholar]
  116. Hatta M., Gao P., Halfmann P., Kawaoka Y. 2001; Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842
    [Google Scholar]
  117. Hausmann S., Jacques J. P., Kolakofsky D. 1996; Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 2:1033–1045
    [Google Scholar]
  118. He B., Lamb R. A. 1999; Effect of inserting paramyxovirus simian virus 5 gene junctions at the HN/L gene junction: analysis of accumulation of mRNAs transcribed from rescued viable viruses. Journal of Virology 73:6228–6234
    [Google Scholar]
  119. He B., Paterson R. G., Ward C. D., Lamb R. A. 1997; Recovery of infectious SV5 from cloned DNA and expression of a foreign gene. Virology 237:249–260
    [Google Scholar]
  120. He B., Leser G. P., Paterson R. G., Lamb R. A. 1998; The paramyxovirus SV5 small hydrophobic (SH) protein is not essential for virus growth in tissue culture cells. Virology 250:30–40
    [Google Scholar]
  121. He B., Lin G. Y., Durbin J. E., Durbin R. K., Lamb R. A. 2001; The SH integral membrane protein of the paramyxovirus simian virus 5 is required to block apoptosis in MDBK cells. Journal of Virology 75:4068–4079
    [Google Scholar]
  122. Herlocher M. L., Clavo A. C., Maassab H. F. 1996; Sequence comparisons of A/AA/6/60 influenza viruses: mutations which may contribute to attenuation. Virus Research 42:11–25
    [Google Scholar]
  123. Hoffman M. A., Banerjee A. K. 1997; An infectious clone of human parainfluenza virus type 3. Journal of Virology 71:4272–4277
    [Google Scholar]
  124. Hoffman M. A., Banerjee A. K. 2000a; Analysis of RNA secondary structure in replication of human parainfluenza virus type 3. Virology 272:151–158
    [Google Scholar]
  125. Hoffman M. A., Banerjee A. K. 2000b; Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3. Virology 269:201–211
    [Google Scholar]
  126. Hoffmann E., Webster R. G. 2000; Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. Journal of General Virology 81:2843–2847
    [Google Scholar]
  127. Hoffmann E., Neumann G., Hobom G., Webster R. G., Kawaoka Y. 2000a; ‘Ambisense’ approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267:310–317
    [Google Scholar]
  128. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G. 2000b; A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences, USA 97:6108–6113
    [Google Scholar]
  129. Honda A., Ueda K., Nagata K., Ishihama A. 1987; Identification of the RNA polymerase-binding site on genome RNA of influenza virus. Journal of Biochemistry 102:1241–1249
    [Google Scholar]
  130. Honda A., Ueda K., Nagata K., Ishihama A. 1988; RNA polymerase of influenza virus: role of NP in RNA chain elongation. Journal of Biochemistry 104:1021–1026
    [Google Scholar]
  131. Honda A., Mukaigawa J., Yokoiyama A., Kato A., Ueda S., Nagata K., Krystal M., Nayak D. P., Ishihama A. 1990; Purification and molecular structure of RNA polymerase from influenza virus A/PR8. Journal of Biochemistry 107:624–628
    [Google Scholar]
  132. Horikami S. M., Curran J., Kolakofsky D., Moyer S. A. 1992; Complexes of Sendai virus NP–P and P–L proteins are required for defective interfering particle genome replication in vitro . Journal of Virology 66:4901–4908
    [Google Scholar]
  133. Horimoto T., Kawaoka Y. 1994; Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. Journal of Virology 68:3120–3128
    [Google Scholar]
  134. Hsu M. T., Parvin J. D., Gupta S., Krystal M., Palese P. 1987; Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proceedings of the National Academy of Sciences, USA 84:8140–8144
    [Google Scholar]
  135. Hu C. J., Kato A., Bowman M. C., Kiyotani K., Yoshida T., Moyer S. A., Nagai Y., Gupta K. C. 1999; Role of primary constitutive phosphorylation of Sendai virus P and V proteins in viral replication and pathogenesis. Virology 263:195–208
    [Google Scholar]
  136. Huang C., Kiyotani K., Fujii Y., Fukuhara N., Kato A., Nagai Y., Yoshida T., Sakaguchi T. 2000; Involvement of the zinc-binding capacity of Sendai virus V protein in viral pathogenesis. Journal of Virology 74:7834–7841
    [Google Scholar]
  137. Hwang L. N., Englund N., Pattnaik A. K. 1998; Polyadenylation of vesicular stomatitis virus mRNA dictates efficient transcription termination at the intercistronic gene junctions. Journal of Virology 72:1805–1813
    [Google Scholar]
  138. Hwang L. N., Englund N., Das T., Banerjee A. K., Pattnaik A. K. 1999; Optimal replication activity of vesicular stomatitis virus RNA polymerase requires phosphorylation of a residue(s) at carboxy-terminal domain II of its accessory subunit, phosphoprotein P. Journal of Virology 73:5613–5620
    [Google Scholar]
  139. Isobe H., Moran T., Li S., Young A., Nathenson S., Palese P., Bona C. 1995; Presentation by a major histocompatibility complex class I molecule of nucleoprotein peptide expressed in two different genes of an influenza virus transfectant. Journal of Experimental Medicine 181:203–213
    [Google Scholar]
  140. Ito N., Takayama M., Yamada K., Sugiyama M., Minamoto N. 2001; Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. Journal of Virology 75:9121–9128
    [Google Scholar]
  141. Jayakar H. R., Murti K. G., Whitt M. A. 2000; Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. Journal of Virology 74:9818–9827
    [Google Scholar]
  142. Jin H., Leser G. P., Lamb R. A. 1994; The influenza virus hemagglutinin cytoplasmic tail is not essential for virus assembly or infectivity. EMBO Journal 13:5504–5515
    [Google Scholar]
  143. Jin H., Subbarao K., Bagai S., Leser G. P., Murphy B. R., Lamb R. A. 1996; Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. Journal of Virology 70:1406–1414
    [Google Scholar]
  144. Jin H., Leser G. P., Zhang J., Lamb R. A. 1997; Influenza virus hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO Journal 16:1236–1247
    [Google Scholar]
  145. Jin H., Cheng X., Zhou H. Z., Li S., Seddiqui A. 2000a; Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2-2) has altered growth characteristics and is attenuated in rodents. Journal of Virology 74:74–82
    [Google Scholar]
  146. Jin H., Zhou H., Cheng X., Tang R., Munoz M., Nguyen N. 2000b; Recombinant respiratory syncytial viruses with deletions in the NS1, NS2, SH, and M2-2 genes are attenuated in vitro and in vivo . Virology 273:210–218
    [Google Scholar]
  147. Johnson J. E., Schnell M. J., Buonocore L., Rose J. K. 1997; Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. Journal of Virology 71:5060–5068
    [Google Scholar]
  148. Johnston I. C., ter Meulen V., Schneider-Schaulies J., Schneider-Schaulies S. 1999; A recombinant measles vaccine virus expressing wild-type glycoproteins: consequences for viral spread and cell tropism. Journal of Virology 73:6903–6915
    [Google Scholar]
  149. Juhasz K., Whitehead S. S., Bui P. T., Biggs J. M., Crowe J. E., Boulanger C. A., Collins P. L., Murphy B. R. 1997; The temperature-sensitive ( ts ) phenotype of a cold-passaged ( cp ) live attenuated respiratory syncytial virus vaccine candidate, designated cpts 530, results from a single amino acid substitution in the L protein. Journal of Virology 71:5814–5819
    [Google Scholar]
  150. Juhasz K., Murphy B. R., Collins P. L. 1999a; The major attenuating mutations of the respiratory syncytial virus vaccine candidate cpts 530/1009 specify temperature-sensitive defects in transcription and replication and a non-temperature-sensitive alteration in mRNA termination. Journal of Virology 73:5176–5180
    [Google Scholar]
  151. Juhasz K., Whitehead S. S., Boulanger C. A., Firestone C. Y., Collins P. L., Murphy B. R. 1999b; The two amino acid substitutions in the L protein of cpts 530/1009, a live-attenuated respiratory syncytial virus candidate vaccine, are independent temperature-sensitive and attenuation mutations. Vaccine 17:1416–1424
    [Google Scholar]
  152. Kahn J. S., Schnell M. J., Buonocore L., Rose J. K. 1999; Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 254:81–91
    [Google Scholar]
  153. Karger A., Schmidt U., Buchholz U. J. 2001; Recombinant bovine respiratory syncytial virus with deletions of the G or SH genes: G and F proteins bind heparin. Journal of General Virology 82:631–640
    [Google Scholar]
  154. Karron R. A., Buonagurio D. A., Georgiu A. F., Whitehead S. S., Adamus J. E., Clements-Mann M. L., Harris D. O., Randolph V. B., Udem S. A., Murphy B. R., Sidhu M. S. 1997a; Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro : clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proceedings of the National Academy of Sciences, USA 94:13961–13966
    [Google Scholar]
  155. Karron R. A., Wright P. F., Crowe J. E. Jr, Clements-Mann M. L., Thompson J., Makhene M., Casey R., Murphy B. R. 1997b; Evaluation of two live, cold-passaged, temperature-sensitive respiratory syncytial virus vaccines in chimpanzees and in human adults, infants, and children. Journal of Infectious Diseases 176:1428–1436
    [Google Scholar]
  156. Kato A., Sakai Y., Shioda T., Kondo T., Nakanishi M., Nagai Y. 1996; Initiation of Sendai virus multiplication from transfected cDNA or RNA with negative or positive sense. Genes to Cells 1:569–579
    [Google Scholar]
  157. Kato A., Kiyotani K., Sakai Y., Yoshida T., Nagai Y. 1997a; The paramyxovirus, Sendai virus, V protein encodes a luxury function required for viral pathogenesis. EMBO Journal 16:578–587
    [Google Scholar]
  158. Kato A., Kiyotani K., Sakai Y., Yoshida T., Shioda T., Nagai Y. 1997b; Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis. Journal of Virology 71:7266–7272
    [Google Scholar]
  159. Kato A., Kiyotani K., Hasan M. K., Shioda T., Sakai Y., Yoshida T., Nagai Y. 1999; Sendai virus gene start signals are not equivalent in reinitiation capacity: moderation at the fusion protein gene. Journal of Virology 73:9237–9246
    [Google Scholar]
  160. Kato A., Ohnishi Y., Kohase M., Saito S., Tashiro M., Nagai Y. 2001; Y2, the smallest of the Sendai virus C proteins, is fully capable of both counteracting the antiviral action of interferons and inhibiting viral RNA synthesis. Journal of Virology 75:3802–3810
    [Google Scholar]
  161. Kawano M., Kaito M., Kozuka Y., Komada H., Noda N., Nanba K., Tsurudome M., Ito M., Nishio M., Ito Y. 2001; Recovery of infectious human parainfluenza type 2 virus from cDNA clones and properties of the defective virus without V-specific cysteine-rich domain. Virology 284:99–112
    [Google Scholar]
  162. Kawaoka Y., Webster R. G. 1988; Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proceedings of the National Academy of Sciences, USA 85:324–328
    [Google Scholar]
  163. Kawaoka Y., Webster R. G. 1989; Interplay between carbohydrate in the stalk and the length of the connecting peptide determines the cleavability of influenza virus hemagglutinin. Journal of Virology 63:3296–3300
    [Google Scholar]
  164. Keller M. A., Murphy S. K., Parks G. D. 2001; RNA replication from the simian virus 5 antigenomic promoter requires three sequence-dependent elements separated by sequence-independent spacer regions. Journal of Virology 75:3993–3998
    [Google Scholar]
  165. Kim H. J., Fodor E., Brownlee G. G., Seong B. L. 1997; Mutational analysis of the RNA-fork model of the influenza A virus vRNA promoter in vivo . Journal of General Virology 78:353–357
    [Google Scholar]
  166. Klenk H. D., Garten W. 1994; Host cell proteases controlling virus pathogenicity. Trends in Microbiology 2:39–43
    [Google Scholar]
  167. Knipe D. M., Howley P. M. (editors) 2001 Fields Virology , 4th edn. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  168. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. Journal of Virology 72:891–899
    [Google Scholar]
  169. Kretzschmar E., Peluso R., Schnell M. J., Whitt M. A., Rose J. K. 1996; Normal replication of vesicular stomatitis virus without C proteins. Virology 216:309–316
    [Google Scholar]
  170. Kretzschmar E., Buonocore L., Schnell M. J., Rose J. K. 1997; High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. Journal of Virology 71:5982–5989
    [Google Scholar]
  171. Krishnamurthy S., Huang Z., Samal S. K. 2000; Recovery of a virulent strain of Newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation. Virology 278:168–182
    [Google Scholar]
  172. Kuo L., Fearns R., Collins P. L. 1996a; The structurally diverse intergenic regions of respiratory syncytial virus do not modulate sequential transcription by a dicistronic minigenome. Journal of Virology 70:6143–6150
    [Google Scholar]
  173. Kuo L., Grosfeld H., Cristina J., Hill M. G., Collins P. L. 1996b; Effects of mutations in the gene-start and gene-end sequence motifs on transcription of monocistronic and dicistronic minigenomes of respiratory syncytial virus. Journal of Virology 70:6892–6901
    [Google Scholar]
  174. Kuo L., Fearns R., Collins P. L. 1997; Analysis of the gene start and gene end signals of human respiratory syncytial virus: quasi-templated initiation at position 1 of the encoded mRNA. Journal of Virology 71:4944–4953
    [Google Scholar]
  175. Kurotani A., Kiyotani K., Kato A., Shioda T., Sakai Y., Mizumoto K., Yoshida T., Nagai Y. 1998; Sendai virus C proteins are categorically nonessential gene products but silencing their expression severely impairs viral replication and pathogenesis. Genes to Cells 3:111–124
    [Google Scholar]
  176. Lamb R. A., Kolakofsky D. 2001; Paramyxoviridae : The viruses and their replication. In Fields Virology pp 1305–1340 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  177. Lamb R. A., Krug R. M. 2001; Orthomyxoviridae : The viruses and their replication. In Fields Virology pp 1487–1532 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  178. Latham T., Galarza J. M. 2001; Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. Journal of Virology 75:6154–6165
    [Google Scholar]
  179. Latorre P., Cadd T., Itoh M., Curran J., Kolakofsky D. 1998a; The various Sendai virus C proteins are not functionally equivalent and exert both positive and negative effects on viral RNA accumulation during the course of infection. Journal of Virology 72:5984–5993
    [Google Scholar]
  180. Latorre P., Kolakofsky D., Curran J. 1998b; Sendai virus Y proteins are initiated by a ribosomal shunt. Molecular and Cellular Biology 18:5021–5031
    [Google Scholar]
  181. Lawson N. D., Stillman E. A., Whitt M. A., Rose J. K. 1995; Recombinant vesicular stomatitis viruses from DNA. Proceedings of the National Academy of Sciences, USA 92:4477–4481
    [Google Scholar]
  182. Leahy M. B., Dobbyn H. C., Brownlee G. G. 2001a; Hairpin loop structure in the 3′ arm of the influenza a virus virion RNA promoter is required for endonuclease activity. Journal of Virology 75:7042–7049
    [Google Scholar]
  183. Leahy M. B., Pritlove D. C., Poon L. L., Brownlee G. G. 2001b; Mutagenic analysis of the 5′ arm of the influenza A virus virion RNA promoter defines the sequence requirements for endonuclease activity. Journal of Virology 75:134–142
    [Google Scholar]
  184. Lee Y. S., Seong B. L. 1996; Mutational analysis of influenza B virus RNA transcription in vitro . Journal of Virology 70:1232–1236
    [Google Scholar]
  185. Lee K. J., Novella I. S., Teng M. N., Oldstone M. B., de la Torre J. C. 2000; NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. Journal of Virology 74:3470–3477
    [Google Scholar]
  186. Li X., Palese P. 1992; Mutational analysis of the promoter required for influenza virus virion RNA synthesis. Journal of Virology 66:4331–4338
    [Google Scholar]
  187. Li X., Palese P. 1994; Characterization of the polyadenylation signal of influenza virus RNA. Journal of Virology 68:1245–1249
    [Google Scholar]
  188. Li T., Pattnaik A. K. 1997; Replication signals in the genome of vesicular stomatitis virus and its defective interfering particles: identification of a sequence element that enhances DI RNA replication. Virology 232:248–259
    [Google Scholar]
  189. Li T., Pattnaik A. K. 1999; Overlapping signals for transcription and replication at the 3′ terminus of the vesicular stomatitis virus genome. Journal of Virology 73:444–452
    [Google Scholar]
  190. Li S. Q., Schulman J. L., Moran T., Bona C., Palese P. 1992; Influenza A virus transfectants with chimeric hemagglutinins containing epitopes from different subtypes. Journal of Virology 66:399–404
    [Google Scholar]
  191. Li S., Polonis V., Isobe H., Zaghouani H., Guinea R., Moran T., Bona C., Palese P. 1993a; Chimeric influenza virus induces neutralizing antibodies and cytotoxic T cells against human immunodeficiency virus type 1. Journal of Virology 67:6659–6666
    [Google Scholar]
  192. Li S., Rodrigues M., Rodriguez D., Rodriguez J. R., Esteban M., Palese P., Nussenzweig R. S., Zavala F. 1993b; Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proceedings of the National Academy of Sciences, USA 90:5214–5218
    [Google Scholar]
  193. Li S., Schulman J., Itamura S., Palese P. 1993c; Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. Journal of Virology 67:6667–6673
    [Google Scholar]
  194. Li H. O., Zhu Y. F., Asakawa M., Kuma H., Hirata T., Ueda Y., Lee Y. S., Fukumura M., Iida A., Kato A., Nagai Y., Hasegawa M. 2000; A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. Journal of Virology 74:6564–6569
    [Google Scholar]
  195. Lin G. Y., Lamb R. A. 2000; The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. Journal of Virology 74:9152–9166
    [Google Scholar]
  196. Lin Y. P., Wharton S. A., Martin J., Skehel J. J., Wiley D. C., Steinhauer D. A. 1997; Adaptation of egg-grown and transfectant influenza viruses for growth in mammalian cells: selection of hemagglutinin mutants with elevated pH of membrane fusion. Virology 233:402–410
    [Google Scholar]
  197. Lin G. Y., Paterson R. G., Richardson C. D., Lamb R. A. 1998; The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein. Virology 249:189–200
    [Google Scholar]
  198. Lopez N., Muller R., Prehaud C., Bouloy M. 1995; The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. Journal of Virology 69:3972–3979
    [Google Scholar]
  199. Luo G. X., Luytjes W., Enami M., Palese P. 1991; The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. Journal of Virology 65:2861–2867
    [Google Scholar]
  200. Luo G., Chung J., Palese P. 1993; Alterations of the stalk of the influenza virus neuraminidase: deletions and insertions. Virus Research 29:141–153
    [Google Scholar]
  201. Luytjes W., Krystal M., Enami M., Pavin J. D., Palese P. 1989; Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59:1107–1113
    [Google Scholar]
  202. Maassab H. F., Bryant M. L. 1999; The development of live attenuated cold-adapted influenza virus vaccine for humans. Reviews in Medical Virology 9:237–244
    [Google Scholar]
  203. Maisner A., Mrkic B., Herrler G., Moll M., Billeter M. A., Cattaneo R., Klenk H. D. 2000; Recombinant measles virus requiring an exogenous protease for activation of infectivity. Journal of General Virology 2:441–449
    [Google Scholar]
  204. Marriott A. C., Easton A. J. 1999; Reverse genetics of the Paramyxoviridae . Advances in Virus Research 53:321–340
    [Google Scholar]
  205. Mebatsion T., Conzelmann K. K. 1996; Specific infection of CD4+ target cells by recombinant rabies virus pseudotypes carrying the HIV-1 envelope spike protein. Proceedings of the National Academy of Sciences, USA 93:11366–11370
    [Google Scholar]
  206. Mebatsion T., Schnell M. J., Cox J. H., Finke S., Conzelmann K. K. 1996; Highly stable expression of a foreign gene from rabies virus vectors. Proceedings of the National Academy of Sciences, USA 93:7310–7314
    [Google Scholar]
  207. Mebatsion T., Finke S., Weiland F., Conzelmann K. K. 1997; A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell 90:841–847
    [Google Scholar]
  208. Mebatsion T., Weiland F., Conzelmann K. K. 1999; Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. Journal of Virology 73:242–250
    [Google Scholar]
  209. Mebatsion T., Verstegen S., De Vaan L. T., Romer-Oberdorfer A., Schrier C. C. 2001; A recombinant Newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos. Journal of Virology 75:420–428
    [Google Scholar]
  210. Mena I., Vivo A., Perez E., Portela A. 1996; Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza virus-like particles obtained from recombinant plasmids. Journal of Virology 70:5016–5024
    [Google Scholar]
  211. Mitnaul L. J., Castrucci M. R., Murti K. G., Kawaoka Y. 1996; The cytoplasmic tail of influenza A virus neuraminidase (NA) affects NA incorporation into virions, virion morphology, and virulence in mice but is not essential for virus replication. Journal of Virology 70:873–879
    [Google Scholar]
  212. Moll M., Klenk H. D., Herrler G., Maisner A. 2001; A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin–Darby canine kidney cells. Journal of Biological Chemistry 276:17887–17894
    [Google Scholar]
  213. Morimoto K., Foley H. D., McGettigan J. P., Schnell M. J., Dietzschold B. 2000; Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. Journal of Neurovirology 6:373–381
    [Google Scholar]
  214. Muhlberger E., Lotfering B., Klenk H. D., Becker S. 1998; Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. Journal of Virology 72:8756–8764
    [Google Scholar]
  215. Muhlberger E., Weik M., Volchkov V. E., Klenk H. D., Becker S. 1999; Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. Journal of Virology 73:2333–2342
    [Google Scholar]
  216. Munoz F. M., Galasso G. J., Gwaltney J. M. Jr, Hayden F. G., Murphy B., Webster R., Wright P., Couch R. B. 2000; Current research on influenza and other respiratory viruses. II. International Symposium. Antiviral Research 46:91–124
    [Google Scholar]
  217. Murata K., Garcia-Sastre A., Tsuji M., Rodrigues M., Rodriguez D., Rodriguez J. R., Nussenzweig R. S., Palese P., Esteban M., Zavala F. 1996; Characterization of in vivo primary and secondary CD8+ T cell responses induced by recombinant influenza and vaccinia viruses. Cellular Immunology 173:96–107
    [Google Scholar]
  218. Murphy S. K., Parks G. D. 1997; Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the paramyxovirus simian virus 5. Virology 232:145–157
    [Google Scholar]
  219. Murphy S. K., Parks G. D. 1999; RNA replication for the paramyxovirus simian virus 5 requires an internal repeated (CGNNNN) sequence motif. Journal of Virology 73:805–809
    [Google Scholar]
  220. Murphy S. K., Ito Y., Parks G. D. 1998; A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3′ terminus. Journal of Virology 72:10–19
    [Google Scholar]
  221. Muster T., Guinea R., Trkola A., Purtscher M., Klima A., Steindl F., Palese P., Katinger H. 1994; Cross-neutralizing activity against divergent human immunodeficiency virus type 1 isolates induced by the gp41 sequence ELDKWAS. Journal of Virology 68:4031–4034
    [Google Scholar]
  222. Muster T., Ferko B., Klima A., Purtscher M., Trkola A., Schulz P., Grassauer A., Engelhardt O. G., Garcia-Sastre A., Palese P. and others 1995; Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus. Journal of Virology 69:6678–6686
    [Google Scholar]
  223. Nagai Y. 1999; Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding. Reviews in Medical Virology 9:83–99
    [Google Scholar]
  224. Nagai Y., Kato A. 1999; Paramyxovirus reverse genetics is coming of age. Microbiology and Immunology 43:613–624
    [Google Scholar]
  225. Neumann G., Hobom G. 1995; Mutational analysis of influenza virus promoter elements in vivo . Journal of General Virology 76:1709–1717
    [Google Scholar]
  226. Neumann G., Kawaoka Y. 1999; Genetic engineering of influenza and other negative-strand RNA viruses containing segmented genomes. Advances in Virus Research 53:265–300
    [Google Scholar]
  227. Neumann G., Kawaoka Y. 2001; Reverse genetics of influenza virus. Virology 287:243–250
    [Google Scholar]
  228. Neumann G., Zobel A., Hobom G. 1994; RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology 202:477–479
    [Google Scholar]
  229. Neumann G., Watanabe T., Ito H., Watanabe S., Goto H., Gao P., Hughes M., Perez D. R., Donis R., Hoffmann E., Hobom G., Kawaoka Y. 1999; Generation of influenza A viruses entirely from cloned cDNAs. Proceedings of the National Academy of Sciences, USA 96:9345–9350
    [Google Scholar]
  230. Neumann G., Hughes M. T., Kawaoka Y. 2000a; Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO Journal 19:6751–6758
    [Google Scholar]
  231. Neumann G., Watanabe T., Kawaoka Y. 2000b; Plasmid-driven formation of influenza virus-like particles. Journal of Virology 74:547–551
    [Google Scholar]
  232. Neumann G., Feldmann H., Watanabe S., Lukashevich I., Kawaoka Y. 2002; Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. Journal of Virology 76:406–410
    [Google Scholar]
  233. Ohgimoto S., Ohgimoto K., Niewiesk S., Klagge I. M., Pfeuffer J., Johnston I. C., Schneider-Schaulies J., Weidmann A., ter Meulen V., Schneider-Schaulies S. 2001; The haemagglutinin protein is an important determinant of measles virus tropism for dendritic cells in vitro . Journal of General Virology 82:1835–1844
    [Google Scholar]
  234. O’Neill R. E., Talon J., Palese P. 1998; The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO Journal 17:288–296
    [Google Scholar]
  235. Palese P. 1995; Genetic engineering of infectious negative-strand RNA viruses. Trends in Microbiology 3:123–125
    [Google Scholar]
  236. Palese P., Zheng H., Engelhardt O. G., Pleschka S., Garcia-Sastre A. 1996; Negative-strand RNA viruses: genetic engineering and application. Proceedings of the National Academy of Sciences, USA 93:11354–11358
    [Google Scholar]
  237. Parisien J. P., Lau J. F., Rodriguez J. J., Sullivan B. M., Moscona A., Parks G. D., Lamb R. A., Horvath C. M. 2001; The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal transducer and activator of transcription 2. Virology 283:230–239
    [Google Scholar]
  238. Park K. H., Huang T., Correia F. F., Krystal M. 1991; Rescue of a foreign gene by Sendai virus. Proceedings of the National Academy of Sciences, USA 88:5537–5541
    [Google Scholar]
  239. Parkin N. T., Chiu P., Coelingh K. L. 1996; Temperature sensitive mutants of influenza A virus generated by reverse genetics and clustered charged to alanine mutagenesis. Virus Research 46:31–44
    [Google Scholar]
  240. Parkin N. T., Chiu P., Coelingh K. 1997; Genetically engineered live attenuated influenza A virus vaccine candidates. Journal of Virology 71:2772–2778
    [Google Scholar]
  241. Parks C. L., Lerch R. A., Walpita P., Sidhu M. S., Udem S. A. 1999; Enhanced measles virus cDNA rescue and gene expression after heat shock. Journal of Virology 73:3560–3566
    [Google Scholar]
  242. Parvin J. D., Palese P., Honda A., Ishihama A., Krystal M. 1989; Promoter analysis of influenza virus RNA polymerase. Journal of Virology 63:5142–5152
    [Google Scholar]
  243. Patterson J. B., Thomas D., Lewicki H., Billeter M. A., Oldstone M. B. 2000; V and C proteins of measles virus function as virulence factors in vivo . Virology 267:80–89
    [Google Scholar]
  244. Pattnaik A. K., Wertz G. W. 1990; Replication and amplification of defective interfering particle RNAs of vesicular stomatitis virus in cells expressing viral proteins from vectors containing cloned cDNAs. Journal of Virology 64:2948–2957
    [Google Scholar]
  245. Pattnaik A. K., Wertz G. W. 1991; Cells that express all five proteins of vesicular stomatitis virus from cloned cDNAs support replication, assembly, and budding of defective interfering particles. Proceedings of the National Academy of Sciences, USA 88:1379–1383
    [Google Scholar]
  246. Pattnaik A. K., Ball L. A., LeGrone A., Wertz G. W. 1995; The termini of VSV DI particle RNAs are sufficient to signal RNA encapsidation, replication, and budding to generate infectious particles. Virology 206:760–764
    [Google Scholar]
  247. Pattnaik A. K., Hwang L., Li T., Englund N., Mathur M., Das T., Banerjee A. K. 1997; Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication. Journal of Virology 71:8167–8175
    [Google Scholar]
  248. Peeples M. E., Collins P. L. 2000; Mutations in the 5′ trailer region of a respiratory syncytial virus minigenome which limit RNA replication to one step. Journal of Virology 74:146–155
    [Google Scholar]
  249. Peeters B. P., de Leeuw O. S., Koch G., Gielkens A. L. 1999; Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. Journal of Virology 73:5001–5009
    [Google Scholar]
  250. Peeters B. P., Gruijthuijsen Y. K., de Leeuw O. S., Gielkens A. L. 2000; Genome replication of Newcastle disease virus: involvement of the rule-of-six. Archives of Virology 145:1829–1845
    [Google Scholar]
  251. Peeters B. P., de Leeuw O. S., Verstegen I., Koch G., Gielkens A. L. 2001; Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals. Vaccine 19:1616–1627
    [Google Scholar]
  252. Pekosz A., He B., Lamb R. A. 1999; Reverse genetics of negative-strand RNA viruses: closing the circle. Proceedings of the National Academy of Sciences, USA 96:8804–8806
    [Google Scholar]
  253. Pelet T., Delenda C., Gubbay O., Garcin D., Kolakofsky D. 1996; Partial characterization of a Sendai virus replication promoter and the rule of six. Virology 224:405–414
    [Google Scholar]
  254. Percy N., Barclay W. S., Garcia-Sastre A., Palese P. 1994; Expression of a foreign protein by influenza A virus. Journal of Virology 68:4486–4492
    [Google Scholar]
  255. Piccone M. E., Fernandez-Sesma A., Palese P. 1993; Mutational analysis of the influenza virus vRNA promoter. Virus Research 28:99–112
    [Google Scholar]
  256. Poon L. L., Fodor E., Brownlee G. G. 2000; Polyuridylated mRNA synthesized by a recombinant influenza virus is defective in nuclear export. Journal of Virology 74:418–427
    [Google Scholar]
  257. Pritlove D. C., Fodor E., Seong B. L., Brownlee G. G. 1995; In vitro transcription and polymerase binding studies of the termini of influenza A virus cRNA: evidence for a cRNA panhandle. Journal of General Virology 76:2205–2213
    [Google Scholar]
  258. Pritlove D. C., Poon L. L., Devenish L. J., Leahy M. B., Brownlee G. G. 1999; A hairpin loop at the 5′ end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro . Journal of Virology 73:2109–2114
    [Google Scholar]
  259. Racaniello V. R., Baltimore D. 1981; Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919
    [Google Scholar]
  260. Radecke F., Billeter M. A. 1996; The nonstructural C protein is not essential for multiplication of Edmonston B strain measles virus in cultured cells. Virology 217:418–421
    [Google Scholar]
  261. Radecke F., Spielhofer P., Schneider H., Kaelin K., Huber M., Dotsch C., Christiansen G., Billeter M. A. 1995; Rescue of measles viruses from cloned DNA. EMBO Journal 14:5773–5784
    [Google Scholar]
  262. Rassa J. C., Parks G. D. 1999; Highly diverse intergenic regions of the paramyxovirus simian virus 5 cooperate with the gene end U tract in viral transcription termination and can influence reinitiation at a downstream gene. Journal of Virology 73:3904–3912
    [Google Scholar]
  263. Rassa J. C., Wilson G. M., Brewer G. A., Parks G. D. 2000; Spacing constraints on reinitiation of paramyxovirus transcription: the gene end U tract acts as a spacer to separate gene end from gene start sites. Virology 274:438–449
    [Google Scholar]
  264. Reutter G. L., Cortese-Grogan C., Wilson J., Moyer S. A. 2001; Mutations in the measles virus C protein that up regulate viral RNA synthesis. Virology 285:100–109
    [Google Scholar]
  265. Roberts A., Rose J. K. 1998; Recovery of negative-strand RNA viruses from plasmid DNAs: a positive approach revitalizes a negative field. Virology 247:1–6
    [Google Scholar]
  266. Roberts A., Rose J. K. 1999; Redesign and genetic dissection of the rhabdoviruses. Advances in Virus Research 53:301–319
    [Google Scholar]
  267. Roberts A., Kretzschmar E., Perkins A. S., Forman J., Price R., Buonocore L., Kawaoka Y., Rose J. K. 1998; Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. Journal of Virology 72:4704–4711
    [Google Scholar]
  268. Roberts A., Buonocore L., Price R., Forman J., Rose J. K. 1999; Attenuated vesicular stomatitis viruses as vaccine vectors. Journal of Virology 73:3723–3732
    [Google Scholar]
  269. Robison C. S., Whitt M. A. 2000; The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. Journal of Virology 74:2239–2246
    [Google Scholar]
  270. Romer-Oberdorfer A., Mundt E., Mebatsion T., Buchholz U. J., Mettenleiter T. C. 1999; Generation of recombinant lentogenic Newcastle disease virus from cDNA. Journal of General Virology 80:2987–2995
    [Google Scholar]
  271. Rose J. K. 1996; Positive strands to the rescue again: a segmented negative-strand RNA virus derived from cloned cDNAs. Proceedings of the National Academy of Sciences, USA 93:14998–15000
    [Google Scholar]
  272. Rose J. K., Whitt M. A. 2001; Rhabdoviridae : The viruses and their replication. In Fields Virology pp 1221–1244 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  273. Rose N. F., Roberts A., Buonocore L., Rose J. K. 2000; Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. Journal of Virology 74:10903–10910
    [Google Scholar]
  274. Rose N. F., Marx P. A., Luckay A., Nixon D. F., Moretto W. J., Donahoe S. M., Montefiori D., Roberts A., Buonacore L., Rose J. K. 2001; An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106:539–549
    [Google Scholar]
  275. Sakaguchi T., Kiyotani K., Kato A., Asakawa M., Fujii Y., Nagai Y., Yoshida T. 1997; Phosphorylation of the Sendai virus M protein is not essential for virus replication either in vitro or in vivo . Virology 235:360–366
    [Google Scholar]
  276. Sakaguchi T., Uchiyama T., Fujii Y., Kiyotani K., Kato A., Nagai Y., Kawai A., Yoshida T. 1999; Double-layered membrane vesicles released from mammalian cells infected with Sendai virus expressing the matrix protein of vesicular stomatitis virus. Virology 263:230–243
    [Google Scholar]
  277. Sakai Y., Kiyotani K., Fukumura M., Asakawa M., Kato A., Shioda T., Yoshida T., Tanaka A., Hasegawa M., Nagai Y. 1999; Accommodation of foreign genes into the Sendai virus genome: sizes of inserted genes and viral replication. FEBS Letters 456:221–226
    [Google Scholar]
  278. Samal S. K., Collins P. L. 1996; RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. Journal of Virology 70:5075–5082
    [Google Scholar]
  279. Sanchez A., Trappier S. G., Mahy B. W., Peters C. J., Nichol S. T. 1996; The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proceedings of the National Academy of Sciences, USA 93:3602–3607
    [Google Scholar]
  280. Sanchez A., Khan A. S., Zaki S. R., Nabel G. J., Ksiazek T. G., Peters C. J. 2001; Filoviridae : Marburg and Ebola Viruses. In Fields Virology pp 1279–1304 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  281. Schlender J., Bossert B., Buchholz U., Conzelmann K. K. 2000; Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize α/β interferon-induced antiviral response. Journal of Virology 74:8234–8242
    [Google Scholar]
  282. Schmaljohn C. S., Hooper J. W. 2001; Bunyaviridae : The viruses and their replication. In Fields Virology pp 1581–1602 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  283. Schmidt A. C., McAuliffe J. M., Murphy B. R., Collins P. L. 2001; Recombinant bovine/human parainfluenza virus type 3 (B/HPIV3) expressing the respiratory syncytial virus (RSV) G and F proteins can be used to achieve simultaneous mucosal immunization against RSV and HPIV3. Journal of Virology 75:4594–4603
    [Google Scholar]
  284. Schmitt A. P., He B., Lamb R. A. 1999; Involvement of the cytoplasmic domain of the hemagglutinin–neuraminidase protein in assembly of the paramyxovirus simian virus 5. Journal of Virology 73:8703–8712
    [Google Scholar]
  285. Schneider H., Kaelin K., Billeter M. A. 1997a; Recombinant measles viruses defective for RNA editing and V protein synthesis are viable in cultured cells. Virology 227:314–322
    [Google Scholar]
  286. Schneider H., Spielhofer P., Kaelin K., Dotsch C., Radecke F., Sutter G., Billeter M. A. 1997b; Rescue of measles virus using a replication-deficient vaccinia-T7 vector. Journal of Virological Methods 64:57–64
    [Google Scholar]
  287. Schnell M. J., Mebatsion T., Conzelmann K. K. 1994; Infectious rabies viruses from cloned cDNA. EMBO Journal 13:4195–4203
    [Google Scholar]
  288. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996a; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proceedings of the National Academy of Sciences, USA 93:11359–11365
    [Google Scholar]
  289. Schnell M. J., Buonocore L., Whitt M. A., Rose J. K. 1996b; The minimal conserved transcription stop–start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. Journal of Virology 70:2318–2323
    [Google Scholar]
  290. Schnell M. J., Johnson J. E., Buonocore L., Rose J. K. 1997; Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90:849–857
    [Google Scholar]
  291. Schnell M. J., Buonocore L., Boritz E., Ghosh H. P., Chernish R., Rose J. K. 1998; Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. EMBO Journal 17:1289–1296
    [Google Scholar]
  292. Schnell M. J., Foley H. D., Siler C. A., McGettigan J. P., Dietzschold B., Pomerantz R. J. 2000; Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proceedings of the National Academy of Sciences, USA 97:3544–3549
    [Google Scholar]
  293. Seong B. L., Brownlee G. G. 1992a; A new method for reconstituting influenza polymerase and RNA in vitro : a study of the promoter elements for cRNA and vRNA synthesis in vitro and viral rescue in vivo . Virology 186:247–260
    [Google Scholar]
  294. Seong B. L., Brownlee G. G. 1992b; Nucleotides 9 to 11 of the influenza A virion RNA promoter are crucial for activity in vitro . Journal of General Virology 73:3115–3124
    [Google Scholar]
  295. Sidhu M. S., Chan J., Kaelin K., Spielhofer P., Radecke F., Schneider H., Masurekar M., Dowling P. C., Billeter M. A., Udem S. A. 1995; Rescue of synthetic measles virus minireplicons: measles genomic termini direct efficient expression and propagation of a reporter gene. Virology 208:800–807
    [Google Scholar]
  296. Singh M., Billeter M. A. 1999; A recombinant measles virus expressing biologically active human interleukin-12. Journal of General Virology 80:101–106
    [Google Scholar]
  297. Skiadopoulos M. H., Durbin A. P., Tatem J. M., Wu S. L., Paschalis M., Tao T., Collins P. L., Murphy B. R. 1998; Three amino acid substitutions in the L protein of the human parainfluenza virus type 3 cp 45 live attenuated vaccine candidate contribute to its temperature-sensitive and attenuation phenotypes. Journal of Virology 72:1762–1768
    [Google Scholar]
  298. Skiadopoulos M. H., Surman S., Tatem J. M., Paschalis M., Wu S. L., Udem S. A., Durbin A. P., Collins P. L., Murphy B. R. 1999a; Identification of mutations contributing to the temperature-sensitive, cold-adapted, and attenuation phenotypes of the live-attenuated cold-passage 45 ( cp 45) human parainfluenza virus 3 candidate vaccine. Journal of Virology 73:1374–1381
    [Google Scholar]
  299. Skiadopoulos M. H., Surman S. R., St Claire M., Elkins W. R., Collins P. L., Murphy B. R. 1999b; Attenuation of the recombinant human parainfluenza virus type 3 cp 45 candidate vaccine virus is augmented by importation of the respiratory syncytial virus cpts 530 L polymerase mutation. Virology 260:125–135
    [Google Scholar]
  300. Skiadopoulos M. H., Tao T., Surman S. R., Collins P. L., Murphy B. R. 1999c; Generation of a parainfluenza virus type 1 vaccine candidate by replacing the HN and F glycoproteins of the live-attenuated PIV3 cp 45 vaccine virus with their PIV1 counterparts. Vaccine 18:503–510
    [Google Scholar]
  301. Skiadopoulos M. H., Surman S. R., Durbin A. P., Collins P. L., Murphy B. R. 2000; Long nucleotide insertions between the HN and L protein coding regions of human parainfluenza virus type 3 yield viruses with temperature-sensitive and attenuation phenotypes. Virology 272:225–234
    [Google Scholar]
  302. Skiadopoulos M. H., Surman S. R., Riggs J. M., Collins P. L., Murphy B. R. 2001; A chimeric human-bovine parainfluenza virus type 3 expressing measles virus hemagglutinin is attenuated for replication but is still immunogenic in rhesus monkeys. Journal of Virology 75:10498–10504
    [Google Scholar]
  303. Spadafora D., Canter D. M., Jackson R. L., Perrault J. 1996; Constitutive phosphorylation of the vesicular stomatitis virus P protein modulates polymerase complex formation but is not essential for transcription or replication. Journal of Virology 70:4538–4548
    [Google Scholar]
  304. Spielhofer P., Bachi T., Fehr T., Christiansen G., Cattaneo R., Kaelin K., Billeter M. A., Naim H. Y. 1998; Chimeric measles viruses with a foreign envelope. Journal of Virology 72:2150–2159
    [Google Scholar]
  305. Stieneke-Grober A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H. D., Garten W. 1992; Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO Journal 11:2407–2414
    [Google Scholar]
  306. Stillman E. A., Whitt M. A. 1997; Mutational analyses of the intergenic dinucleotide and the transcriptional start sequence of vesicular stomatitis virus (VSV) define sequences required for efficient termination and initiation of VSV transcripts. Journal of Virology 71:2127–2137
    [Google Scholar]
  307. Stillman E. A., Whitt M. A. 1998; The length and sequence composition of vesicular stomatitis virus intergenic regions affect mRNA levels and the site of transcript initiation. Journal of Virology 72:5565–5572
    [Google Scholar]
  308. Stillman E. A., Whitt M. A. 1999; Transcript initiation and 5′-end modifications are separable events during vesicular stomatitis virus transcription. Journal of Virology 73:7199–7209
    [Google Scholar]
  309. Stope M. B., Karger A., Schmidt U., Buchholz U. J. 2001; Chimeric bovine respiratory syncytial virus with attachment and fusion glycoproteins replaced by bovine parainfluenza virus type 3 hemagglutinin–neuraminidase and fusion proteins. Journal of Virology 75:9367–9377
    [Google Scholar]
  310. Subbarao E. K., Park E. J., Lawson C. M., Chen A. Y., Murphy B. R. 1995; Sequential addition of temperature-sensitive missense mutations into the PB2 gene of influenza A transfectant viruses can effect an increase in temperature sensitivity and attenuation and permits the rational design of a genetically engineered live influenza A virus vaccine. Journal of Virology 69:5969–5977
    [Google Scholar]
  311. Szewczyk B., Laver W. G., Summers D. F. 1988; Purification, thioredoxin renaturation, and reconstituted activity of the three subunits of the influenza A virus RNA polymerase. Proceedings of the National Academy of Sciences, USA 85:7907–7911
    [Google Scholar]
  312. Takeda M., Takeuchi K., Miyajima N., Kobune F., Ami Y., Nagata N., Suzaki Y., Nagai Y., Tashiro M. 2000; Recovery of pathogenic measles virus from cloned cDNA. Journal of Virology 74:6643–6647
    [Google Scholar]
  313. Takeda M., Pekosz A., Shuck K., Pinto L. H., Lamb R. A. 2002; Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. Journal of Virology 76:1391–1399
    [Google Scholar]
  314. Takeuchi K., Takeda M., Miyajima N., Kobune F., Tanabayashi K., Tashiro M. 2002; Recombinant wild-type and Edmonston strain measles viruses bearing heterologous H proteins: role of H protein in cell fusion and host cell specificity. Journal of Virology 76:4891–4900
    [Google Scholar]
  315. Talon J., Horvath C. M., Polley R., Basler C. F., Muster T., Palese P., Garcia-Sastre A. 2000a; Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. Journal of Virology 74:7989–7996
    [Google Scholar]
  316. Talon J., Salvatore M., O’Neill R. E., Nakaya Y., Zheng H., Muster T., Garcia-Sastre A., Palese P. 2000b; Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proceedings of the National Academy of Sciences, USA 97:4309–4314
    [Google Scholar]
  317. Taniguchi T., Palmieri M., Weissmann C. 1978; QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 247:223–228
    [Google Scholar]
  318. Tao T., Durbin A. P., Whitehead S. S., Davoodi F., Collins P. L., Murphy B. R. 1998; Recovery of a fully viable chimeric human parainfluenza virus (PIV) type 3 in which the hemagglutinin–neuraminidase and fusion glycoproteins have been replaced by those of PIV type 1. Journal of Virology 72:2955–2961
    [Google Scholar]
  319. Tao T., Skiadopoulos M. H., Durbin A. P., Davoodi F., Collins P. L., Murphy B. R. 1999; A live attenuated chimeric recombinant parainfluenza virus (PIV) encoding the internal proteins of PIV type 3 and the surface glycoproteins of PIV type 1 induces complete resistance to PIV1 challenge and partial resistance to PIV3 challenge. Vaccine 17:1100–1108
    [Google Scholar]
  320. Tao T., Davoodi F., Cho C. J., Skiadopoulos M. H., Durbin A. P., Collins P. L., Murphy B. R. 2000a; A live attenuated recombinant chimeric parainfluenza virus (PIV) candidate vaccine containing the hemagglutinin–neuraminidase and fusion glycoproteins of PIV1 and the remaining proteins from PIV3 induces resistance to PIV1 even in animals immune to PIV3. Vaccine 18:1359–1366
    [Google Scholar]
  321. Tao T., Skiadopoulos M. H., Davoodi F., Riggs J. M., Collins P. L., Murphy B. R. 2000b; Replacement of the ectodomains of the hemagglutinin–neuraminidase and fusion glycoproteins of recombinant parainfluenza virus type 3 (PIV3) with their counterparts from PIV2 yields attenuated PIV2 vaccine candidates. Journal of Virology 74:6448–6458
    [Google Scholar]
  322. Tapparel C., Roux L. 1996; The efficiency of Sendai virus genome replication: the importance of the RNA primary sequence independent of terminal complementarity. Virology 225:163–171
    [Google Scholar]
  323. Tapparel C., Hausmann S., Pelet T., Curran J., Kolakofsky D., Roux L. 1997; Inhibition of Sendai virus genome replication due to promoter-increased selectivity: a possible role for the accessory C proteins. Journal of Virology 71:9588–9599
    [Google Scholar]
  324. Tapparel C., Maurice D., Roux L. 1998; The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. Journal of Virology 72:3117–3128
    [Google Scholar]
  325. Techaarpornkul S., Barretto N., Peeples M. E. 2001; Functional analysis of recombinant respiratory syncytial virus deletion mutants lacking the small hydrophobic and/or attachment glycoprotein gene. Journal of Virology 75:6825–6834
    [Google Scholar]
  326. Teng M. N., Collins P. L. 1999; Altered growth characteristics of recombinant respiratory syncytial viruses which do not produce NS2 protein. Journal of Virology 73:466–473
    [Google Scholar]
  327. Teng M. N., Whitehead S. S., Bermingham A., St Claire M., Elkins W. R., Murphy B. R., Collins P. L. 2000; Recombinant respiratory syncytial virus that does not express the NS1 or M2-2 protein is highly attenuated and immunogenic in chimpanzees. Journal of Virology 74:9317–9321
    [Google Scholar]
  328. Teng M. N., Whitehead S. S., Collins P. L. 2001; Contribution of the respiratory syncytial virus G glycoprotein and its secreted and membrane-bound forms to virus replication in vitro and in vivo . Virology 289:282–296
    [Google Scholar]
  329. Thomas J. M., Stevens M. P., Percy N., Barclay W. S. 1998; Phosphorylation of the M2 protein of influenza A virus is not essential for virus viability. Virology 252:54–64
    [Google Scholar]
  330. Tiley L. S., Hagen M., Matthews J. T., Krystal M. 1994; Sequence-specific binding of the influenza virus RNA polymerase to sequences located at the 5′ ends of the viral RNAs. Journal of Virology 68:5108–5116
    [Google Scholar]
  331. Tober C., Seufert M., Schneider H., Billeter M. A., Johnston I. C., Niewiesk S., ter Meulen V., Schneider-Schaulies S. 1998; Expression of measles virus V protein is associated with pathogenicity and control of viral RNA synthesis. Journal of Virology 72:8124–8132
    [Google Scholar]
  332. Valsamakis A., Schneider H., Auwaerter P. G., Kaneshima H., Billeter M. A., Griffin D. E. 1998; Recombinant measles viruses with mutations in the C, V, or F gene have altered growth phenotypes in vivo . Journal of Virology 72:7754–7761
    [Google Scholar]
  333. Volchkov V. E., Becker S., Volchkova V. A., Ternovoj V. A., Kotov A. N., Netesov S. V., Klenk H. D. 1995; GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430
    [Google Scholar]
  334. Volchkov V. E., Volchkova V. A., Muhlberger E., Kolesnikova L. V., Weik M., Dolnik O., Klenk H. D. 2001; Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969
    [Google Scholar]
  335. von Messling V., Zimmer G., Herrler G., Haas L., Cattaneo R. 2001; The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. Journal of Virology 75:6418–6427
    [Google Scholar]
  336. Vulliemoz D., Roux L. 2001; ‘Rule of six’: how does the Sendai virus RNA polymerase keep count?. Journal of Virology 75:4506–4518
    [Google Scholar]
  337. Wagner E., Engelhardt O. G., Gruber S., Haller O., Kochs G. 2001; Rescue of recombinant Thogoto virus from cloned cDNA. Journal of Virology 75:9282–9286
    [Google Scholar]
  338. Walker W. S., Castrucci M. R., Sangster M. Y., Carson R. T., Kawaoka Y. 1997; HEL-Flu: an influenza virus containing the hen egg lysozyme epitope recognized by CD4+ T cells from mice transgenic for an αβ TCR. Journal of Immunology 159:2563–2566
    [Google Scholar]
  339. Walsh E. P., Baron M. D., Anderson J., Barrett T. 2000a; Development of a genetically marked recombinant rinderpest vaccine expressing green fluorescent protein. Journal of General Virology 81:709–718
    [Google Scholar]
  340. Walsh E. P., Baron M. D., Rennie L. F., Monaghan P., Anderson J., Barrett T. 2000b; Recombinant rinderpest vaccines expressing membrane-anchored proteins as genetic markers: evidence of exclusion of marker protein from the virus envelope. Journal of Virology 74:10165–10175
    [Google Scholar]
  341. Wang X., Li M., Zheng H., Muster T., Palese P., Beg A. A., Garcia-Sastre A. 2000; Influenza A virus NS1 protein prevents activation of NF-κB and induction of α/β interferon. Journal of Virology 74:11566–11573
    [Google Scholar]
  342. Watanabe T., Watanabe S., Ito H., Kida H., Kawaoka Y. 2001; Influenza a virus can undergo multiple cycles of replication without M2 ion channel activity. Journal of Virology 75:5656–5662
    [Google Scholar]
  343. Watanabe T., Watanabe S., Neumann G., Kida H., Kawaoka Y. 2002; Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. Journal of Virology 76:767–773
    [Google Scholar]
  344. Wertz G. W., Whelan S., LeGrone A., Ball L. A. 1994; Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. Proceedings of the National Academy of Sciences, USA 91:8587–8591
    [Google Scholar]
  345. Wertz G. W., Perepelitsa V. P., Ball L. A. 1998; Gene arrangement attenuates expression and lethality of a nonsegmented strand RNA virus. Proceedings of the National Academy of Sciences, USA 95:3501–3506
    [Google Scholar]
  346. Whelan S. P. J., Wertz G. W. 1999; Regulation of RNA synthesis by the genomic termini of vesicular stomatitis virus: identification of distinct sequences essential for transcription but not replication. Journal of Virology 73:297–306
    [Google Scholar]
  347. Whelan S. P., Ball L. A., Barr J. N., Wertz G. T. 1995; Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proceedings of the National Academy of Sciences, USA 92:8388–8392
    [Google Scholar]
  348. Whelan S. P., Barr J. N., Wertz G. W. 2000; Identification of a minimal size requirement for termination of vesicular stomatitis virus mRNA: implications for the mechanism of transcription. Journal of Virology 74:8268–8276
    [Google Scholar]
  349. Whitehead S. S., Firestone C. Y., Collins P. L., Murphy B. R. 1998a; A single nucleotide substitution in the transcription start signal of the M2 gene of respiratory syncytial virus vaccine candidate cpts 248/404 is the major determinant of the temperature-sensitive and attenuation phenotypes. Virology 247:232–239
    [Google Scholar]
  350. Whitehead S. S., Juhasz K., Firestone C. Y., Collins P. L., Murphy B. R. 1998b; Recombinant respiratory syncytial virus (RSV) bearing a set of mutations from cold-passaged RSV is attenuated in chimpanzees. Journal of Virology 72:4467–4471
    [Google Scholar]
  351. Whitehead S. S., Bukreyev A., Teng M. N., Firestone C. Y., St Claire M., Elkins W. R., Collins P. L., Murphy B. R. 1999a; Recombinant respiratory syncytial virus bearing a deletion of either the NS2 or SH gene is attenuated in chimpanzees. Journal of Virology 73:3438–3442
    [Google Scholar]
  352. Whitehead S. S., Firestone C. Y., Karron R. A., Crowe J. E. Jr, Elkins W. R., Collins P. L., Murphy B. R. 1999b; Addition of a missense mutation present in the L gene of respiratory syncytial virus (RSV) cpts 530/1030 to RSV vaccine candidate cpts 248/404 increases its attenuation and temperature sensitivity. Journal of Virology 73:871–877
    [Google Scholar]
  353. Whitehead S. S., Hill M. G., Firestone C. Y., St Claire M., Elkins W. R., Murphy B. R., Collins P. L. 1999c; Replacement of the F and G proteins of respiratory syncytial virus (RSV) subgroup A with those of subgroup B generates chimeric live attenuated RSV subgroup B vaccine candidates. Journal of Virology 73:9773–9780
    [Google Scholar]
  354. Wright P. F., Karron R. A., Belshe R. B., Thompson J., Crowe J. E. Jr, Boyce T. G., Halburnt L. L., Reed G. W., Whitehead S. S., Anderson E. L., Wittek A. E., Casey R., Eichelberger M., Thumar B., Randolph V. B., Udem S. A., Chanock R. M., Murphy B. R. 2000; Evaluation of a live, cold-passaged, temperature-sensitive, respiratory syncytial virus vaccine candidate in infancy. Journal of Infectious Diseases 182:1331–1342
    [Google Scholar]
  355. Yamanaka K., Ogasawara N., Yoshikawa H., Ishihama A., Nagata K. 1991; In vivo analysis of the promoter structure of the influenza virus RNA genome using a transfection system with an engineered RNA. Proceedings of the National Academy of Sciences, USA 88:5369–5373
    [Google Scholar]
  356. Yoshida T., Shaw M. W., Young J. F., Compans R. W. 1981; Characterization of the RNA associated with influenza A cytoplasmic inclusions and the interaction of NS1 protein with RNA. Virology 110:87–97
    [Google Scholar]
  357. Young D. F., Didcock L., Goodbourn S., Randall R. E. 2000; Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269:383–390
    [Google Scholar]
  358. Young D. F., Chatziandreou N., He B., Goodbourn S., Lamb R. A., Randall R. E. 2001; Single amino acid substitution in the V protein of simian virus 5 differentiates its ability to block interferon signaling in human and murine cells. Journal of Virology 75:3363–3370
    [Google Scholar]
  359. Yu D., Shioda T., Kato A., Hasan M. K., Sakai Y., Nagai Y. 1997; Sendai virus-based expression of HIV-1 gp120: reinforcement by the V version. Genes to Cells 2:457–466
    [Google Scholar]
  360. Yunus A. S., Collins P. L., Samal S. K. 1998; Sequence analysis of a functional polymerase (L) gene of bovine respiratory syncytial virus: determination of minimal trans -acting requirements for RNA replication. Journal of General Virology 79:2231–2238
    [Google Scholar]
  361. Zhang J., Leser G. P., Pekosz A., Lamb R. A. 2000; The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. Virology 269:325–334
    [Google Scholar]
  362. Zheng H., Palese P., Garcia-Sastre A. 1996; Nonconserved nucleotides at the 3′ and 5′ ends of an influenza A virus RNA play an important role in viral RNA replication. Virology 217:242–251
    [Google Scholar]
  363. Zheng H., Lee H. A., Palese P., Garcia-Sastre A. 1999; Influenza A virus RNA polymerase has the ability to stutter at the polyadenylation site of a viral RNA template during RNA replication. Journal of Virology 73:5240–5243
    [Google Scholar]
  364. Zhou Y., Konig M., Hobom G., Neumeier E. 1998; Membrane-anchored incorporation of a foreign protein in recombinant influenza virions. Virology 246:83–94
    [Google Scholar]
  365. Zobel A., Neumann G., Hobom G. 1993; RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Research 21:3607–3614
    [Google Scholar]
  366. Zurcher T., Luo G., Palese P. 1994; Mutations at palmitylation sites of the influenza virus hemagglutinin affect virus formation. Journal of Virology 68:5748–5754
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2635
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error