Characterization of epitopes on zucchini yellow mosaic potyvirus coat protein permits studies on the interactions between strains

C. Desbiez,1 A. Gal-On,2 B. Raccah2 and H. Lecoq1

1Station de Pathologie Végétale, INRA, Domaine Saint Maurice, BP 94, 84143 Montfavet Cedex, France
2Department of Virology, Agricultural Research Organization, The Volcani Center, POB 6, Bet Dagan 50250, Israel

Monoclonal antibodies (MAbs) raised against the coat protein of zucchini yellow mosaic potyvirus (ZYMV) were characterized by epitope mapping using synthetic oligopeptides. Two mutant viruses with a mutation in the amino acid sequence important for epitope recognition in vitro were obtained by site-directed mutagenesis of a full-length cDNA of ZYMV. Two MAbs, CC11 and DD2, could distinguish specifically between these mutants in mixed infections, or after sequential inoculations of muskmelons. Sequential inoculations of the mutants and analysis with MAbs CC11 and DD2 revealed that cross-protection was established between these quasi-isogenic strains within 48 h.

Potyviruses present an important variability in their biological and serological properties, probably related to the frequent generation of mutants due to the high error rate of viral RNA polymerases (Domingo & Holland, 1994). Understanding factors involved in the competition between virus strains, and in plant virus evolution, is the first step towards developing durable control strategies, specially through breeding for resistance or cross-protection. Nucleotide or amino acid sequencing of parts of the viral genome provides direct information on the level of variation (Ward et al., 1992), but it is not always convenient when studying large numbers of strains. Barbara et al. (1995) could distinguish isolates of zucchini yellow mosaic potyvirus (ZYMV) in mixed infections by PCR amplification and restriction fragment length polymorphism analysis, but this method is difficult to use for quantitative estimations. Serological tests, particularly using monoclonal antibodies (MAbs), can reveal virus variability more easily, but a precise determination of the epitopes recognized by the MAbs is required to localize the variable domains.

One of the most accurate current techniques for epitope analysis is the use of synthetic overlapping peptides (Geysen et al., 1984). The contribution of individual residues to the formation of linear epitopes recognized by MAbs can be determined (Shukla et al., 1989; Andreeva et al., 1994).

Author for correspondence: Hervé Lecoq.
Fax +33 4 90 31 63 50. e-mail comic@avi-maur.avignon.inra.fr

Fig. 1. Reactivity of MAbs CC11, AB6 and DD2 with overlapping synthetic dodecapeptides representing the N-terminal part of ZYMV CP. Underlined amino acids indicate the linear epitopes recognized by the antibodies.
However, this method is not suitable for analysis of the conformational epitopes present only in intact virions.

MAbs to ZYMV coat protein (CP) were obtained as previously described (Desbiez et al., 1996). The amino acids involved in the formation of epitopes recognized by these MAbs were mapped and analysed using synthetic overlapping peptides according to Geysen et al. (1984). Forty-one dodecapeptides with a slippage of one amino acid were used to analyse the N-terminal part of the CP, while 45 dodecapeptides with a slippage of 5 amino acids were used to study the core and C-terminal part of the CP of 238 amino acids. The peptides were synthesized by Chiron Mimotope Peptide System (CMPS; Clayton VIC 3169, Australia) on polyethylene rods. The choice of peptides allowed a precise epitope characterization for the N-terminal part of the CP, which is known to be highly variable, surface-located and to contain most of the potyvirus-specific epitopes (Shukla et al., 1996). The amino acids for epitope formation, and to obtain markers for the specific detection of quasi-isogenic ZYMV variants. An infectious cDNA of the NAT strain of ZYMV was cloned (Gal-On et al., 1991). Site-directed mutagenesis was performed according to the method of Kunkel (1985) on a 5'6 kbp Psll$_{3825}$-EcoRV$_{9450}$ fragment subcloned in pBlueScript II KS+ (Stratagene). Oligonucleotides A (GCACTCAG-AGTACTGTG) and B (GGATGTTGCCGGCTCCG) were used to obtain mutants A and B, respectively. Bold letters indicate mutated nucleotides and underlined letters indicate restriction sites (for SalI and Nael, respectively) introduced during mutagenesis. Each mutation was introduced in full-length ZYMV cDNA under a cauliflower mosaic virus 35S promoter by replacement of the 2:2 kbp Sph$_{4518}$-MluI$_{8745}$ fragment. Mutated viral cDNA was inoculated onto cotyledons of zucchini squash or cucumber plantlets by particle bombardment, a technique that has been shown to be more efficient than mechanical inoculation of cDNA or transcripts (Gal-On et al., 1995). The presence of the mutations in the infectious viruses was checked by sequencing RNA from systemically infected leaves of inoculated plants (Sanger et al., 1977). Subsequent mechanical inoculations to propagate the mutant strains followed standard methods (Lecoq et al., 1991). Tests for aphid transmission and the host range of the mutants were as described previously (Desbiez et al., 1996).

Mutant and wild-type ZYMV strains were quantified by double-antibody sandwich (DAS)-ELISA with polyclonal anti-

Amino acid sequence Recognition by MAbs

<table>
<thead>
<tr>
<th>Amino acid sequence</th>
<th>Recognition by MAbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT2</td>
<td>CC11: +++ AB6: +++ DD2: +++</td>
</tr>
<tr>
<td>MT9</td>
<td>CC11: + AB6: +++ DD2: +++</td>
</tr>
<tr>
<td>MT9.C3</td>
<td>CC11: 0 AB6: +++ DD2: +++</td>
</tr>
<tr>
<td>MT1</td>
<td>CC11: +++ AB6: + DD2: 0</td>
</tr>
</tbody>
</table>

Fig. 2. Mutations in the N-terminal part of ZYMV CP and serological reactivity in TAS-ELISA tests. (a) Amino acid sequence of the N-terminal part of the CP of ZYMV isolates from Martinique (MT isolates), and their serological reactivity in TAS-ELISA tests with MAbs CC11, AB6 and DD2. The Q/S sequence identifies the cleavage site between the putative polymerase and the CP. Absorbance at 405 nm (A) 3 h after substrate incubation: + + +, A > 1.5; + +, 0.5 < A ≤ 1.5; +, 0.05 < A ≤ 0.5; 0, A < 0.05. (b) Amino acid sequence of the N-terminal part of the CP of ZYMV mutants A and B obtained by site-directed mutagenesis and the NAT strain, and their serological reactivity in TAS-ELISA with MAbs CC11, AB6 and DD2.
body raised against the ZYMV E9 strain, and an adapted triple-antibody sandwich (TAS)-ELISA for characterization with the MAbs (Desbiez et al., 1996).

Plants inoculated with the two mutated cDNAs showed symptoms within 1 week. Symptoms on zucchini, melon Védranais and cucumber were identical to those induced by wild-type virus: vein clearing on the young leaves followed by a systemic mosaic, yellowing, stunting and leaf deformations. Mutants A and B had the same pathology as wild-type ZYMV with the protecting strain, and mutant A the challenging strain. (b) Mutant B is the protecting strain, and mutant A the challenging strain.

![Absorbance at 405 nm](image)

Fig. 3. Specific detection of ZYMV mutants A or B in TAS-ELISA using MAbs CC11 and DD2. The challenging strain was inoculated at intervals from 8 h (H+8) to 3 days (D+3) to melon Védranais, either on the cotyledons already inoculated with the protecting strain (lanes ‘C’) or on the non-inoculated first true leaf (lanes ‘L’). Results are expressed as the mean of two independent experiments, using four plants for each assay, with the standard error indicated. Mutant viruses were inoculated alone (lanes A, B) or co-inoculated at the same time (lane A+B). (a) Mutant A is the protecting strain, and mutant B the challenging strain.

The protection obtained in this study was established in a very short time compared to previous cross-protection studies. Walkey et al. (1992) showed that a 2 week incubation of zucchini squash plants inoculated with the mild strain ZYMV WK (Lecoq et al., 1991) was necessary for efficient protection (estimated by symptom severity) against challenge with severe ZYMV isolates; no protection was observed when the interval between inoculations was 2 to 8 days. Cross-protection is known to be more efficient when the protecting and challenging strains are closely related (Wang et al., 1991). The mild and severe strains used by Walkey et al. (1992) originated from

containing 0·2% sodium diethylthiocarbamate trihydrate (DIECA) are indicated in Fig. 2(b). Mutation A totally abolished recognition by MAb CC11, and had no effect on recognition by AB6 and DD2. Mutation B had no effect on recognition by CC11, but abolished recognition by DD2 and reduced recognition by AB6 by up to 90%. Recognition of the mutants by polyclonal antiserum was unaffected. Similar results were obtained with purified virus diluted in phosphate with DIECA, or PBS pH 7·4 to a final concentration of 10 µg/ml. This indicates that the results were not due to a lowered multiplication of some mutants. A series of twofold dilutions of purified virus, ranging from 160 µg/ml to 0·3 µg/ml, was tested with MAbs CC11 and DD2, and revealed that the antibody signal strength for different quantities of viral antigen was similar for both MAbs (data not shown).

The differential reactivity of mutants A and B using CC11 and DD2 was exploited to investigate cross-protection between these two quasi-isogenic ZYMV strains. Mutants A and B were mechanically inoculated, alone or together, on the cotyledons of four melons Védranais at the one-leaf stage. The singly infected plants were subsequently inoculated either on the cotyledons, or on the first leaf, with the reciprocal mutant, at intervals of 8 h (H+8), 1 day (D+1), 2 days (D+2) and 3 days (D+3) after the first inoculation. The presence of each strain in the third true leaf of each plantlet was checked 2 weeks later by TAS-ELISA using the specific MAbs CC11 and DD2. Fig. 3 shows the mean absorbance obtained for eight plants from two independent repeats at each inoculation interval. The results were similar when the fifth true leaves were tested 4 weeks after inoculation (data not shown).

The use of MAbs CC11 and DD2 to detect mutants A and B independently in mixed infections revealed a competition between strains that was readily established in less than 48 h (Fig. 3). Infection by the challenging strain could occur when the interval between inoculations was up to 24 h, but detection of the challenging strain was lowered, suggesting a reduced virus multiplication or migration under these conditions. Similar protection was observed whether the challenging strain was inoculated on the cotyledons (already inoculated with the protecting strain) or on the first non-inoculated leaf. The use of mutants A or B as protecting or challenging strain had symmetrical effects, suggesting that the protection was not related to the lower fitness of one of the mutants.

The protection obtained in this study was established in a very short time compared to previous cross-protection studies. Walkey et al. (1992) showed that a 2 week incubation of zucchini squash plants inoculated with the mild strain ZYMV WK (Lecoq et al., 1991) was necessary for efficient protection (estimated by symptom severity) against challenge with severe ZYMV isolates; no protection was observed when the interval between inoculations was 2 to 8 days. Cross-protection is known to be more efficient when the protecting and challenging strains are closely related (Wang et al., 1991). The mild and severe strains used by Walkey et al. (1992) originated from
different hosts and geographical regions, and probably presented a lower homology than the quasi-isogenic mutants used in this paper. However, our results measured actual amount of virus antigen, whereas Walkey et al. (1992) depended on symptom expression, which may not be directly correlated to virus replication and accumulation.

In this study, we characterized the ZYMV CP epitopes recognized by three MAb. The results confirmed the importance of the N-terminal part of the CP in epitope formation (Shukla et al., 1988, 1989), and correlated well with serological and sequence data available for ZYMV isolates (Desbiez et al., 1996). Site-directed mutagenesis of a full-length cDNA identified some of the amino acids important for epitope formation in planta with whole virus, which confirmed the results obtained in vitro with overlapping peptides. The point mutations introduced had no obvious effects on symptomatology on the hosts examined, or on viral multiplication, as estimated by ELISA tests. These mutations could be used as neutral markers for the study of interactions between ZYMV variants in mixed infections.

Biologically neutral point mutations specifically detected by MAbs, introduced in ZYMV variants, may also be useful for quantitative analysis of the competition between strains presenting biological differences, and may contribute to our understanding of the evolution of plant virus populations through competition between variants with differential fitness.

We thank E. Meiri for her help in mutagenesis, and C. Robaglia for his help in sequencing.

References

Received 31 January 1997; Accepted 29 April 1997