The human cytomegalovirus glycoprotein B gene (ORF UL55) is expressed early in the infectious cycle

Ch. Smuda, E. Bogner and K. Radsak

Institut für Virologie der Philipps-Universität, Robert-Koch-Straße 17, 35037 Marburg, Germany

Northern hybridizations were carried out using mRNA preparations of human cytomegalovirus (HCMV)-infected cultures and gene-specific antisense RNA probes for transcriptional analysis of the gene cluster composed of genes for DNA polymerase, glycoprotein B (gB), herpes simplex virus-infected cell protein 18.5 homologue p130 and a major DNA-binding protein corresponding to open reading frames (ORFs) UL54–UL57, respectively. Monocistronic transcripts of 5 kb and 3–7 kb were found for ORFs UL54 and UL55, respectively, and five additional high molecular mass overlapping transcripts of 14 kb, 10 kb, 10 kb, 8 kb and 6 kb were found. Mapping of 5' ends showed that transcription was initiated at the expected distance downstream of predicted TATA elements; in the case of a UL56-specific transcript two potential initiation sites were identified. Transcription was found to terminate at the expected distance downstream of either of two prominent polyadenylation consensus motifs in the region of UL54. All transcripts were identified early in the infectious cycle, except for the UL55 (gB)-specific transcript of 3–7 kb which was not synthesized until late post-infection. However, specific immunoreactions demonstrated the presence of a gB-specific polypeptide early after infection in the absence of viral DNA synthesis. It is suggested that a bicistronic transcript of 8 kb encoded by ORFs UL55 and UL54 is involved in biosynthesis of early HCMV gB.

Introduction

All known herpesviruses studied to date have a number of apparently essential genes which are highly conserved throughout the virus family (Kouzarides et al., 1987 b; Albrecht & Fleckenstein, 1990). Prominent with regard to its size is a block of contiguous genes (gB/POL block) consisting of open reading frames (ORFs) encoding viral DNA polymerase, glycoprotein B, infected-cell protein (ICP) 18.5 homologues of herpes simplex virus and a DNA-binding protein. The flanking regions of the gB/POL block, on the other hand, do not exhibit any obvious nucleotide sequence homologies and do not seem to code for homologous gene products. The sequential order of the four ORFs in the gB/POL gene block mentioned above has been recognized in β- and γ-herpesviruses, but differs in α-herpesvirus genomes where the DNA polymerase gene is localized adjacent to that of the DNA-binding protein and oriented in the opposite direction (Albrecht & Fleckenstein, 1990). It is noteworthy that the ORFs of this conserved gene cluster code for products that seem to exhibit very diverse functions, i.e. two nonstructural proteins (the major single-stranded DNA-binding protein and the DNA polymerase) on the one hand, and on the other hand, two structural proteins, the ICP 18.5 homologue, which may also be a DNA-binding protein involved in DNA packaging (Mettenleiter et al., 1993; Tengelsen et al., 1993; E. Bogner, M. Landidini, K. Radsak & M. Stinski, unpublished results), and the gB homologue, which is a component of the viral envelope in most herpesviruses, Epstein–Barr virus (EBV) being one known exception (Gong & Kieff, 1990). The homologous products of this gene cluster appear to provide essential functions during the early phase of the infectious cycle, and in the maturation of infectious herpesvirus progeny (e.g. Herrold et al., 1996; Cai et al., 1988; Schleiss, 1994, 1995; Mettenleiter et al., 1993; Tengelsen et al., 1993). Transcription of single genes of this cluster has been studied for several herpesvirus species, and has in general revealed a complex pattern of presumably overlapping messengers (Anders & Gibson, 1988; Spaete et al., 1988; Schleiss, 1995).

In the case of the β-herpesvirus human cytomegalovirus (HCMV), previous analysis of the respective gene block by...
Spaete et al. (1988) suggested that for all ORFs, mRNAs are transcribed unidirectionally from the complementary strand (Chee et al., 1990). In addition to monocistronic transcripts for the DNA polymerase gene (UL54) and that of the gB homologue (UL55), high molecular mass most likely polycistronic transcripts were described which were not precisely assigned to specific ORFs. The present study extends these findings, providing evidence for the existence of at least seven HCMV gB/POL block-specific transcripts. Five transcription initiation sites, two of which were located upstream of ORF UL56, and two termination sites in the region of ORF UL54 were identified. An intriguing observation was the detection of an ‘early’ bicistronic messenger of 8 kb specific for ORFs UL55/UL54 and of a gB (gpUL55)-specific polypeptide in extracts from infected cell cultures kept in the presence of inhibitors which specifically suppress viral DNA synthesis.

Methods

- **Cells and virus.** Monolayers of human foreskin fibroblasts (HFF) and human astrocytoma cells (U373) were cultured in Eagle’s minimum essential medium (MEM) supplemented with 10% foetal calf serum (FCS), vitamins, nonessential amino acids, glucose, penicillin at 0.5 U/ml and gentamycin at 60 μg/ml. For propagation of HCMV strains AD169 and Towne, confluent monolayers of HFF (1.5 x 10⁵ cells) were infected at an m.o.i. of approximately 0.1 and serum concentration was lowered to 2% for experimental infection, an m.o.i. of about 3 was used. Virus titrations were performed by the end-point dilution method using indirect immunofluorescence for the detection of immediate early HCMV antigen with a commercial MAb (Dupont; Radsak et al., 1990).

- **Preparation of antisense RNA probes.** As a first step the following restriction enzyme fragments of cosmid 1029 (Fleckenstein et al., 1982; Kollert-Jons et al., 1991) were subcloned into pUC18 in order to obtain specific amplification constructs for ORFs UL54 through 57: pUC18-UL54 was obtained by subcloning the 5.2 kb PstI–SacI fragment of cosmid 1029 into the vector after digestion with SmaI/SacI; pUC18-UL55 was constructed by subcloning the 3.1 kb XmaII fragment of cosmid 1029 into the XmaII site of the vector (Reis et al., 1993); the 3.4 kb HpaI–SacI fragment of cosmid 1029 was inserted into the SmaI/SacI restriction sites of the vector to obtain pUC18-UL56 (Bogner et al., 1993); and in the case of pUC18-UL57 the 3.9 kb Smal–XhoI fragment of cosmid 1029 was subcloned into the vector after digestion with Smal/SacI. Correct subcloning of the fragments was examined by sequencing the sites of insertion (Sanger et al., 1977). Five defined restriction fragments representative of UL54, the intervening sequence between UL54/55, UL55, UL56 and UL57 were excised from the viral inserts of the four pUC18 constructs (Table 1) and transferred into the multiple cloning sites of vectors pGEM-Zf(+) or pGEM-11Zf(+). Following digestion of transcription constructs as described in Table 1, ‘run off’ transcription under the control of the T7 or SP6 promoter was performed in the presence of digoxigenin (DIG)-11-UTP according to the manufacturer’s instructions (Boehringer Mannheim). For preparation of the glyceraldehyde phosphate dehydrogenase (GAPDH) probe, which was used to estimate mRNA quantities in the various samples via reaction of the constitutively expressed GAPDH transcript, an appropriate pCR II-construct (Invitrogen) was digested with BanHI prior to antisense transcription under the control of the T7 promoter. The UL75 (glycoprotein H gene)-specific probe was prepared by isolation of a 410 bp fragment after digestion of a pRC/CMV-UL75 construct with BglII and BanHI and insertion of the fragment in antisense orientation into pcDNA3; following linearization of the pcDNA3-asUL75 construct with BanHI the probe was obtained after transcription under the control of the T7 promoter. The DIG-labelled antisense RNA probes produced under these conditions consisted of molecules of uniform length and were used for Northern blotting with infected-cell mRNA (see below).

| Table 1. Preparation of gene-specific RNA probes |

<table>
<thead>
<tr>
<th>Transcription vector</th>
<th>T7 3’ end</th>
<th>RNA probe specific for:</th>
<th>Size (bp) of gene-specific fragments excised from the respective pUC18 constructs</th>
<th>5’ end</th>
<th>SP6</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGEM-11</td>
<td>Apal</td>
<td>Apal UL54</td>
<td>1175</td>
<td>PstI</td>
<td>Nsi</td>
</tr>
<tr>
<td>pGEM-11</td>
<td>Nol</td>
<td>Nol UL54/55</td>
<td>470</td>
<td>Nsi</td>
<td>Nsi</td>
</tr>
<tr>
<td>pGEM-3</td>
<td>EcoRI</td>
<td>EcoRI UL55</td>
<td>710</td>
<td>Clal</td>
<td>Accl</td>
</tr>
<tr>
<td>pGEM-11</td>
<td>SacI</td>
<td>SacI UL56</td>
<td>880</td>
<td>XhoI</td>
<td>Sal</td>
</tr>
<tr>
<td>pGEM-3</td>
<td>SacI</td>
<td>SacI UL57</td>
<td>1470</td>
<td>Sal</td>
<td>Sal</td>
</tr>
</tbody>
</table>
Table 2. Genomic positions and nucleotide sequence of primers used for mapping of 5’ and 3’ ends

(a) Gene specific primers used for 5’ end determination

<table>
<thead>
<tr>
<th>ORF</th>
<th>Reverse transcriptase reaction</th>
<th>Polymerase chain reaction</th>
<th>Sequencing reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Genomic bp position</td>
<td>Distance from +1 (bp)</td>
<td>Genomic bp position</td>
</tr>
<tr>
<td>UL54</td>
<td>80635–80664</td>
<td>345</td>
<td>80790–80814</td>
</tr>
<tr>
<td>UL55</td>
<td>83140–83165</td>
<td>688</td>
<td>83464–83488</td>
</tr>
<tr>
<td>UL56-1</td>
<td>85330–85355</td>
<td>740</td>
<td>85915–85939</td>
</tr>
<tr>
<td>UL56-2</td>
<td>85330–85355</td>
<td>697</td>
<td>85915–85939</td>
</tr>
<tr>
<td>UL57</td>
<td>89484–89512</td>
<td>790</td>
<td>90040–90064</td>
</tr>
</tbody>
</table>

(b) G- and C-tail directed primers used for 5’ end determination

<table>
<thead>
<tr>
<th>Tail</th>
<th>Nucleotide sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>CUACUACUACUAGGCCACGCGTCGACTAGTACGGGIIGGGIIGGGIIG*</td>
</tr>
<tr>
<td>G</td>
<td>CUACUACUACUAGGCCACGCGTCGACTAGTACGCCCCCCCCCCCCCCCC</td>
</tr>
</tbody>
</table>

* Purchased from GIBCO Life Technologies.

(c) Gene specific primers used for 3’ end determination

<table>
<thead>
<tr>
<th>ORF</th>
<th>Nucleotide sequence</th>
<th>Genomic bp position</th>
<th>Distance from 3’ end (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL54</td>
<td>CGTGAGCATCTGCGTGATGCAGTCGCAG</td>
<td>76460–76433</td>
<td>185</td>
</tr>
<tr>
<td>UL55</td>
<td>CGTGCCGCGAGGTGTCATGTTCGACGGT</td>
<td>80501–80473</td>
<td>78</td>
</tr>
</tbody>
</table>

see Results) in 4 ml Sol D (4 M guanidinium thiocyanate, 25 mM sodium citrate (pH 7.0), 0.5% (w/v) N-lauroyl sodium sarcosinate, 0.1 M 2-mercaptoethanol). After the addition of 0.5 ml 2 M sodium acetate (pH 4.0); RNA was extracted by vigorous shaking of the mixture with 5 ml equilibrated phenol and 1 ml chloroform–isoamyl alcohol (24:1) for 10 s. After incubation on ice for 15 min, the emulsion was centrifuged for 15 min at 10000 r.p.m. and 4 °C (SW41 rotor, Beckman L8-M ultracentrifuge). The aqueous phase was collected and the RNA was precipitated overnight with 5 ml 2-propanol. To protect the RNA from degradation by contaminating RNases, RNase inhibitor (Boehringer Mannheim) was added to the aqueous phase at 5 U/ml according to the instructions of the supplier. Poly(A)+ mRNA was purified from total cell RNA using oligo(dT)-affinity resin (Oligotex mRNA kit, Qiagen) following the manufacturer’s instructions. For quantification of mRNA samples absorbance at 260 nm was determined.

Formaldehyde–agarose gel electrophoresis of mRNAs and Northern blotting was carried out according to methods described by Sambrook et al. (1989) using Hybond-N+ membrane (Amer sham) for mRNA transfer. For hybridization of the blotted and cross-linked mRNAs and the DIG-labelled antisense RNA probes the following protocol was used: the blot membrane was incubated for at least 1 h at 68 °C in prehybridization buffer 5× SSC (0.15 M NaCl, 0.015 M sodium citrate, pH 7.0), 0.02% SDS, 0.1% lauroyl sarcosinate, 2% blocking reagent (Boehringer Mannheim) in 100 mM maleic acid, 150 mM NaCl, pH 7.5]. The prehybridization mixture was subsequently replaced by fresh prehybridization buffer supplemented with the heat-denatured DIG-labelled antisense RNA probe (100 °C for 10 min) for hybridization overnight at 68 °C. After washing the blot membranes (twice for 10 min in 2× SSC containing 0.1% SDS at room temperature and twice for 15 min in 0.1× SSC containing 0.1% SDS at 68 °C), detection of hybridized DIG-labelled probes by means of X-ray films was achieved by incubation with anti-DIG F(ab)2 fragments conjugated to alkaline phosphatase using a DIG luminescent detection kit following precisely the manufacturer’s instructions (Boehringer Mannheim).

■ Mapping of 5’ and 3’ ends of gB/POL block-specific mRNA. cDNAs were prepared by extension of gene-specific oligonucleotides hybridized to isolated mRNAs using a commercial RACE (rapid amplification of cDNA ends) kit (GIBCO Life Technologies). The sequences of the oligonucleotides used for the extension reactions are listed in Table 2. 5’-end cDNAs were subsequently extended with terminal nucleotide transferase by cytosine- or guanosine-tailed anchors prior to amplification using an anchor-directed primer complementary to the homopolymeric tail: amplification of 3’-end cDNAs was carried out with oligo(dT) as the second primer. Amplified cDNAs were analysed by...
sequencing (Sanger et al., 1977) using an automated sequence analyser (ABI PRISM 377 DNA Sequencer, Perkin Elmer). For precise localization of 5' and 3' ends, respectively, the pretail-sequences obtained for the cDNAs were aligned with that of the viral genomic sequence as determined with the first primers mentioned above (Table 2).

Immunofluorescence and immunoprecipitation. For immunofluorescence, cells were grown on round cover-slips in Petri dishes. At the desired times p.i. cover-slip cultures were fixed in 4% paraformaldehyde in PBS at room temperature for 20 min, after washing in PBS quenched with 25 mM NH₄Cl for 5 min, and permeabilized by treatment with 0.5% Triton X-100. Staining for HCMV major capsid protein (MCP) was carried out after extensive rinsing in PBS with murine MAb 28-4 (provided by B. Plachter, Erlangen, Germany) for 60 min at room temperature prior to further incubation at room temperature for 60 min with fluorescein-labelled goat anti-mouse F(ab)² fragments (Dianova). For double staining a mixture of MAbs against the gene product of HCMV UL112/113, which exhibits nuclear localization (murine MAb provided by K. Hirai, Tokyo, Japan; Iwayama et al., 1994), and human HCMV gB-specific MAb ITC88 (provided by M. Ohlin, Lund, Sweden; Ohlin et al., 1993) or gH-specific polyclonal antibody (PAb; Bogner et al., 1992) was used in the first incubation; fluorescein-labelled anti-human and Texas red-labelled anti-mouse F(ab)² fragments from goat (Dianova) were used in the second incubation. In the case of MAbs the first incubation was carried out with undiluted culture medium containing 10% FCS. Results were obtained using a Zeiss microscope with photographic equipment (Axio phot).

For immunoprecipitation, total cell extracts were prepared from [³⁵S]methionine-labelled cultures (see text) by solubilization in extraction buffer (20 mM Tris–HCl, pH 9, 0.3 M NaCl, 0.5% Triton X-100, 0.5% sodium deoxycholate, 10% glycerol, 1 mM PMSF, 500 ml per 5 × 10⁶ cells) and ultrasonic treatment (3 × 10 s at maximum setting in the sonification bath of a Branson Sonifier); insoluble material was sedimented for 15 min at 1500 × g. Comparable total amounts of protein of the extract samples and a mixture of gB-specific MAbs 27-156 (Spaete et al., 1988) and ITC88 (Ohlin et al., 1993) were used for precipitation as described previously (Bogner et al., 1992), prior to separation of precipitates by SDS–PAGE (Laemmli, 1970) and fluorography.

Results

Identification of specific transcripts of ORFs UL54–57 (HCMVgB/POL block)

Because early as well as late viral gene products are encoded by ORFs of the HCMV gB/POL block, initial analyses were carried out with HCMV strain AD169-infected U373 cells at 96 h p.i. when transcription of all ORFs was most likely completed. At this time mRNA was isolated and electrophoretically separated; Northern blotting was performed as described in Methods. The approximate locations of the five gene-specific antisense RNA probes used within the respective ORFs are shown in Fig. 1(a). The probe specific for UL54 recognized four RNA species (5 kb, 8 kb, about 10 kb and 14 kb); that for UL54/55 recognized six RNA species (3.7 kb, 5 kb, 6 kb, 8 kb, approximately 10 kb and 14 kb); that for UL55 recognized five RNA species (3.7 kb, 6 kb, 8 kb, about 10 kb and 14 kb); that for UL56 reacted with three RNA species (6 kb, approximately 10 kb and 14 kb); and two signals for RNA species of about 10 kb and 14 kb were obtained with the probe specific for UL57 (Fig. 1b). All probes except that derived from UL57 gave an additional weak signal of about 5.5 kb. Strong signals at about 5 kb for RNA from mock-infected cells were also observed only with the probes specific for UL56 and UL57, most likely representing artifactual binding to residual 28S RNA. Northern blot analyses carried out under identical conditions with mRNAs isolated from HFF cells infected with HCMV strain AD169 or strain Towne-infected U373 cells late p.i. yielded essentially identical results (data not shown) disregarding differences in signal intensities particularly for the high molecular mass transcripts which were not further investigated at this point. As an additional control, sense RNA probes whose transcription is regulated by the SP6 promoter of the pGEM constructs were prepared (Table 1) and used for Northern blotting with mRNAs from AD169-infected HFF cells; this experimental set-up yielded no specific hybridization signals.

For an interpretation of these observations, a search (GCG program) of the gB/POL block nucleotide sequence for prominent consensus motifs known to regulate transcription initiation and termination was performed, the result of which is schematically depicted in Fig. 1(a). This analysis revealed TATA elements upstream of each of the four ORFs, and several polyadenylation signals in an appropriate context with regard to the ORFs (Fig. 1a). Regarding the patterns of transcripts obtained with the various probes it is feasible to assume that transcription may be initiated downstream of each of the four predicted promoter consensus motifs, and termination may be regulated only by two of the predicted polyadenylation consensus motifs, i.e. those downstream of UL55 and UL54, respectively. Transcriptional activity would thus produce a total of seven messengers: three pairs of 5' co-terminal mRNAs representative of ORFs UL57–54 and UL57–55, ORFs UL56–54 and UL6–55, and ORFs UL55–54 and UL55, respectively, and an additional messenger for ORF UL54. The transcripts representing UL54 and UL55 should be monocistronic, and of the five polycistronic transcripts, two should have similar sizes of about 10 kb. This likely interpretation for the prominent transcripts presented in Fig. 1(b) is schematically depicted in Fig. 1(c). As the less prominent transcript of 5.5 kb was synthesized only late p.i. (see analysis of the time-course of appearance of the mRNA species) it was not considered in this context.

Mapping of the 5’ and 3’ ends of gB/POL-specific transcripts

As pointed out above, interpretation of the Northern hybridization analysis was based on the arrangement of potential regulatory elements in the viral genomic sequence. To confirm that transcription cap sites upstream of each ORF and termination sites, respectively, were located within the expected context, and to re-examine the estimated sizes of the observed transcripts, mapping of the 5’ and 3’ ends of mRNAs
isolated at 96 h p.i. was carried out using primers for cDNA synthesis which hybridized at a distance of about 345–790 nt from the putative mRNA 5’ and 3’ ends, respectively (described in Methods, Table 2).

The precise transcription start sites downstream of the respective prominent TATA elements were located within an expected distance of 23–32 nt, except for ORF UL56 where a second potential start site was found another 40 nt further downstream. The genomic nucleotide sequence contains a potential upstream TATA element at a reasonable distance of 19 nt.

Using C- as well as G-tailing of 5’ end cDNAs prior to amplification, single terminating C-residues were found that did not conform to the viral genomic sequence. A likely interpretation is that these additional residues originated from transcription of the cap structure nucleotides during cDNA synthesis. Regarding termination, transcription was found to proceed to 16 nt downstream of either of the two prominent
Fig. 2. Time-course of appearance of transcripts during the HCMV infectious cycle. Northern hybridizations were performed with mRNA preparations of mock- and HCMV strain AD169-infected HFF, isolated at 12 h intervals from 8-96 h p.i., and antisense RNA probes specific for (a) ORF UL54 and (b) ORF UL55. The relative positions of the specific probes used are
polyadenylation motifs (AATAAA) located downstream of ORFs UL55 and UL54, respectively. Other potential transcription termination elements (see Fig. 1(a)) were apparently not utilized.

On the basis of this analysis the exact sizes of the observed transcripts [without poly(A) +] were calculated: 14093 nt for the 14 kb transcript representing UL57–UL54; 9916 nt for the 10 kb UL57–UL55 transcript; 9893 nt for the 10 kb UL56–UL54 transcript; 5716 nt for the 6 kb UL56–UL55 transcript; 7647 nt for the 8 kb UL55–UL54 transcript; 3470 nt for the 3·7 kb UL55 transcript; and 4805 nt for the 5·5 kb UL54 transcript.

Time-course of transcription of ORFs UL54–57 during the infectious cycle

In order to precisely determine whether synthesis of these messengers was initiated at different times during the infectious cycle, parallel cultures of AD169-infected cells were harvested at 12 h intervals starting at 8 h p.i. until 96 h p.i., prior to preparation of mRNA preparations. Mock-infected cultures were used as a control. Preliminary experiments were performed with aliquots of the various mRNA preparations; messages were approximately quantified using a probe for GAPDH mRNA, which is constitutively expressed in infected cells (see Methods). For consecutive Northern blotting with the gene-specific RNA probes, care was taken to use appropriately adjusted amounts of the mRNA samples for parallel electrophoretic separation (Fig. 2(b)). Hybridization with the UL54 probe revealed the appearance at about 24 h p.i. of high molecular mass messengers of 8 kb, 10 kb and 14 kb (Fig. 2(a)). On the other hand, there was no reaction of messengers of 6 kb and 3·7 kb, as expected (see also Fig. 1(c)). However, an mRNA of 5 kb, most likely representing the monocistronic transcript of the DNA polymerase gene, ORF UL54, was clearly recognized as early as 8–12 h p.i. Using the probe specific for ORF UL55, messengers of 6 kb and 10 kb appeared as early as 24 h p.i. (Fig. 2(b, c)) followed by those of about 8 kb and 14 kb at 24–36 h p.i.; the monocistronic mRNA of 3·7 kb encoded by the gB gene, ORF UL55, was not recognized before 36–48 h p.i. Further Northern blot analyses carried out with probes UL54/55, UL56 and UL57 (data not shown), schematically summarized in Fig. 2(c), essentially supported the results obtained with probes UL55 and UL54, respectively.

Taken together, our analysis of the time-course of transcription of the gB/POL block genes revealed: (i) approximately simultaneous appearance early after infection (24 h p.i.) for the doublets of presumably 5′ co-terminal transcripts with initiation sites upstream of ORFs UL57 and UL56, respectively, which are terminated either downstream of ORF UL55 or ORF UL54 (mRNAs of 14 kb and 10 kb and those of 10 kb and 6 kb, respectively); (ii) that signals for the monocistronic messengers of the viral DNA polymerase and gB encoded by ORFs UL54 and UL55, respectively, were observed early (8–12 h p.i.) and late (36–48 h p.i.) during the infectious cycle; and (iii) that appearance p.i. differed for the presumably 5′ co-terminal transcripts of 3·7 kb and 8 kb, encoded by ORF UL55, and ORFs UL55 and UL54, respectively, with the initiation site upstream of ORF UL55: signals for the monocistronic 8 kb product were obtained early p.i. (12–24 h p.i.), whereas those for the monocistronic 3·7 kb messenger were obtained only late p.i. (about 36 h p.i.). Preparations of mRNA from strain Towne-infected HFF cells or strain AD169-infected U373 cells yielded essentially identical results (data not shown).

Expression of ORF UL55 in the absence of viral DNA synthesis

In order to definitely classify the various transcripts observed as early or late, mRNAs were purified from strain AD169-infected HFF cells that were kept in the presence of phosphonoacetic acid (PAA; 200 µg/ml) or ganciclovir (DPHG; 10 µM) until 48 h p.i. Northern hybridization with probes specific for ORF UL54 and UL55 yielded bands of 5 kb, 6 kb, 8 kb, 10 kb, 14 kb, and of 6 kb, 8 kb, 10 kb, 14 kb (Fig. 3, UL54 and UL55 probes), respectively, and no signal in the range 3·7 kb. This result showed in particular that the 3·7 kb transcript was a late product. Likewise, no signal was obtained using identical preparations from inhibitor-treated infected cells and a specific probe for UL75 (gH gene) which is transcribed only late p.i.; on the other hand, with mRNA from untreated infected cells the expected signal of 2·9 kb was obtained (Fig. 3, UL75 probe). Preparations from strain Towne-or AD169-infected U373 cells yielded identical results; furthermore, none of the probes specific for ORFs UL54, UL55 or UL75 hybridized with mRNA from mock-infected cells (data not shown; see also Fig. 2, mock lanes).

It has been shown previously that the genes for herpesvirus gB homologues belong to the γ1 class, whose expression is not stringently dependent on viral DNA synthesis (Baradan et al., 1994). According to this definition, however, the likely HCMV gB messenger of 3·7 kb observed in our experiments
should be classified as γ2, i.e. ‘true late’, because it was not observed in the presence of inhibitors.

To further elucidate whether a gB-specific polypeptide was translated in the absence of HCMV DNA synthesis, immunoreactions were performed. For immunofluorescence, parallel cover-slip cultures of untreated or inhibitor (PAA; 200 µg/ml)-treated strain AD169-infected HFF cells (48 h p.i.) were subjected to double staining with a human gB-specific MAb (Ohlin et al., 1993) or gH-specific polyclonal antibody (PAb; Bogner et al., 1992) and MAb against the early HCMV UL112/113-product (M23; Iwayama et al., 1994) (Fig. 4a, a' and b, b'); staining with MAb against the late HCMV antigen MCP was performed as a control (Fig. 4c, d). In untreated infected cells all MAbs specifically recognized the respective antigens (Fig. 4w/o). In PAA-treated cells, distinct immunolabelling of presumably endoplasmic reticulum (ER)/Golgi structures was observed with gB-specific MAb (Fig. 4b), but not with gH-specific PAb (Fig. 4d); granular nuclear structures were, on the other hand, stained in both samples with MAb against M23 (Fig. 4b', d'). Staining of untreated or inhibitor-treated infected cells with murine gB-specific MAb 27-156 (provided by W. Britt, Birmingham, Alabama, USA; Spaete et al., 1988) alone yielded the same fluorescence pattern as that obtained with human gB-specific MAb (Fig. 4a, b; data not shown). No specific labelling was obtained in inhibitor-treated cells with MCP-specific MAb (Fig. 4d). Identical observations were obtained with DPHG-treated cover-slip cultures of infected HFF and U373 cells, respectively (data not shown).

For immunoprecipitation, parallel cultures (5 × 10^6 cells each) of untreated, PAA-treated (200 µg/ml; 72 h p.i.) or DPHG-treated infected cells were radiolabelled with [%35S]methionine (50 mCi/ml) for 6 h prior to preparation of total cell extracts as described in Methods (Bogner et al., 1992). Immunoprecipitation was performed using a mixture of gB-specific MAb 27-156 and ITC 88 (Ohlin et al., 1993), and the precipitates were analysed by SDS–PAGE (Laemmli, 1970) and fluorography. Mock-infected cells served as a control. Under these conditions, gB-specific polypeptides were precipitated from extracts of untreated infected cells, including the precursor polypeptide of 160 kDa in addition to cleavage products of 90–110 kDa and 55 kDa (Fig. 5w/o; Britt & Vugler, 1989). Precipitates from inhibitor-treated cells, on the other hand, contained gB precursor polypeptide only at a lower amount than those from untreated cells; furthermore, the inhibitory effect of DPHG appeared to be more pronounced than that of PAA (Fig. 5, PAA and DPHG). These observations...
Fig. 4. Recognition by immunofluorescence of HCMV gB in infected HFF cells treated with an inhibitor of viral DNA synthesis. Parallel sets of untreated (w/o) and PAA-treated (200 µg/ml) HCMV strain AD169-infected cover-slip cultures were fixed and permeabilized as described in Methods and double stained with human gB-specific (a, b) and mouse anti-M23-specific MAb (a', b'), or human gH-specific polyclonal antibody (c, d) and mouse anti-M23-specific MAb (c', d'). As controls untreated (e) and inhibitor-treated (f) cover-slip cultures of infected HFF cells were stained with mouse MCP-specific MAb.
clearly suggest that the HCMV gB homologue is indeed synthesized in the absence of viral DNA synthesis but is not processed by proteolytic cleavage.

Discussion

Previous transcriptional analyses of the HCMV gB/POL block usually dealt only with single ORFs of the gene cluster and have consistently shown that (i) several signals of variable sizes were recognized in Northern blots by the respective gene-specific probes, suggesting the existence of overlapping 3′ or 5′ co-terminal transcripts, and (ii) regardless of whether the ORFs encoded either structural or nonstructural viral components, the respective transcripts were, in most of the reports, observed early after infection (Spaete et al., 1988; Kouzarides et al., 1987, a, b; Mach et al., 1986; Heilbronn et al., 1987; Kemble et al., 1987; Anders & Gibson, 1988; Bogner et al., 1992). Our analysis of the entire gene block presented here using purified mRNAs and highly sensitive as well as specific antisense riboprobes (Engler-Blum et al., 1993) for Northern blotting confirms and extends the notion based on the former reports. A total of seven prominent transcripts was identified, most likely resulting from transcriptional activity driven by four TATA elements (starting at bp 90331, 86130, 83885 and 81041 of the viral genome; Chee et al., 1990) and terminating at bp 80394 and 76260 downstream of two potential transcriptional stop motifs (bp 80415 and 76329). Regarding for example ORF UL54, the DNA polymerase gene, Kouzarides et al. (1987 a) described mRNAs of 1·6 kb, 4·7 kb and 7·5 kb in addition to larger species which were not clearly resolved. With the exception of the low molecular mass product this compares well to our results demonstrating mRNAs of 5 kb, 8 kb, 10 kb and 14 kb with the probe for UL54 messengers. As for transcription of ORFs UL56 and UL57, the data presented here are largely in line with those reported by Spaete et al. (1988) and Kemble et al. (1987), respectively, considering that designation of kb sizes for products of high molecular mass is usually an approximation. For transcription initiation directly upstream of ORF UL56 two potential cap sites were observed, one most likely controlled by a prominent TATA element starting at bp 86130 of the viral genomic sequence, and a second one controlled by a potential TATA element starting at bp 86083. Generation of overlapping mRNAs with distinct 5′ ends controlled by different promoters in a single transcription unit has also been observed for HCMV ORF UL4 (Chang et al., 1989). It was suggested that heterogeneous 5′ ends may play a role in post-transcriptional regulation of gene expression, e.g. at different stages of the infectious cycle.

The transcriptional pattern observed in our experiments with the probe specific for ORF UL55 deserves particular attention. The data obtained partly confirmed previous reports but also differed in essential aspects, e.g. regarding the appearance of gB-specific messages during the HCMV infectious cycle (Spaete et al., 1988; Kouzarides et al., 1987 b; Mach et al., 1986). It has been a consistent observation that in addition to larger transcripts a prominent HCMV gB-specific mRNA, size 3·7–4 kb, is found in infected cells late p.i. (Kouzarides et al., 1987 b; Mach et al., 1986). In contrast, Spaete et al. (1988) identified this messenger as early as 4 h p.i. as well as in the presence of inhibitors of viral DNA synthesis. Our own results showed again its earliest appearance only by 36 h.

![HCMV gB Recognition](image-url)
p.i. and its complete absence in inhibitor-treated infected HFF and U373 cultures, no matter which virus strain, AD169 or Towne, was used for infection.

Regarding translational expression of HCMV gB at early times p.i. in the absence of viral DNA synthesis, as documented here, it has to be taken into account that all of the probes used also reacted with large early transcripts representative of two to all four ORFs including UL55. Disregarding the hypothetical possibility of internal translation initiation, the presumably bicistronic transcript of about 8 kb is of particular interest in this context since it should contain the ORF UL55 message in the 5’ end segment. This gB-specific mRNA of 8 kb was also transcribed in inhibitor-treated cells at reduced levels, and may tentatively be classified as a γ1 transcript (Baradaran et al., 1994). Interestingly, an early bicistronic gB-specific mRNA of about 7 kb has also been identified for another β-herpesvirus, guinea-pig cytomegalovirus (Schleiss, 1994). Observations comparable to ours, i.e. an early bicistronic messenger originating from the ORFs for gB and for the viral DNA polymerase, and a late monocistronic gB-specific mRNA, have not been described for α-herpesviruses (Pederson et al., 1992). This is not surprising because in this subfamily the ORF for the DNA polymerase is located at the opposite end of the gene cluster adjacent to that of the major single-stranded DNA-binding protein (Albrecht & Fleckenstein, 1990). Regarding HCMV, our observations suggest that gB-related transcriptional and translational activity may be differentially regulated at early and late times p.i.

Our finding that low levels of HCMV gB, but not gH, are expressed in the presence of inhibitors of viral DNA synthesis is intriguing. Herpesvirus gB homologues are generally abundant structural components of the viral envelope which are essential for virus entry and penetration. The known exception is EBV gB, which was identified exclusively in intracellular membranes including the inner nuclear membrane during late lytic infection, but was not incorporated into intracellular or extracellular virus particles (Gong & Kieff, 1990). Furthermore, only late mRNAs of 1.8 kb and 3 kb have been identified for EBV gB. To our knowledge there is presently no information available as to whether early gB messengers identified in other herpesvirus systems are indeed also translated (Sapeta et al., 1988). As for HCMV, the gB protein expressed in inhibitor-treated cells was not processed by proteolytic cleavage. Even regarding the alternative possibility that the block by high concentrations of inhibitors of DNA synthesis as used here was incomplete, the absence of gB cleavage indicates that cellular transport out of the ER along the exocytic pathway for cleavage by the cellular endoprotease furin in the trans-Golgi network (Vey et al., 1995) was inefficient under these conditions; possibly gB transport for efficient proteolytic cleavage is related to the relative abundance of other later viral products. In any case the notion that an ‘early’ HCMV gB exists needs further investigation, e.g. by characterization of the modifications of this product and eukaryotic expression of appropriate constructs containing ORFs UL55 and UL56.

This investigation was supported by a grant from Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 286, TP A3). The authors are indebted to Dr W. Brit (Birmingham, USA), Dr M. Ohlin (Lund, Sweden) and Dr B. Plachter (Erlangen, Germany) and Dr K. Hirai (Tokyo, Japan) for generously providing monoclonal antibodies, and to Dr Th. Mockenhaupt (Marburg, Germany) for providing the HCMV UL75-specific probe.

References

Received 30 September 1996; Accepted 1 April 1997